Yiliang Zhang, Shengyang Zhou, Runming Zhao, Chunyu Xiong, Yingzhen Huang, Minzhu Zhang, Yan Wang
{"title":"Multi-layer regulation of postprandial triglyceride metabolism in response to acute cold exposure.","authors":"Yiliang Zhang, Shengyang Zhou, Runming Zhao, Chunyu Xiong, Yingzhen Huang, Minzhu Zhang, Yan Wang","doi":"10.1016/j.jlr.2025.100751","DOIUrl":null,"url":null,"abstract":"<p><p>Triglyceride-rich lipoproteins (TRLs) carry lipids in the bloodstream, where the fatty acid moieties are liberated by lipoprotein lipase (LPL) and taken up by peripheral tissues such as brown adipose tissue (BAT) and white adipose tissue (WAT), whereas the remaining cholesterol-rich remnant particles are cleared mainly by the liver. Elevated triglyceride (TG) levels and prolonged circulation of cholesterol-rich remnants are risk factors for cardiovascular diseases. Acute cold exposure decreases postprandial TG levels and is a potential therapeutic approach to treat hypertriglyceridemia. However, how acute cold exposure regulates TG metabolism remains incompletely understood. In the current study, we found that acute cold exposure simultaneously increases postprandial very-low-density lipoprotein (VLDL) production and TG clearance, with the latter playing a dominant role and resulting in decreased TG levels. Acute cold exposure increases LPL activity and TG uptake in BAT, while suppressing LPL activity and TG uptake in WAT. Mechanistically, acute cold exposure increases BAT LPL activity through transcriptional upregulation of Lpl and posttranscriptional regulation via inhibiting the hepatic insulin-ANGPTL8-ANGPTL3 axis, while suppressing WAT LPL activity through upregulation of ANGPTL4. Angptl8 knockout mice have dramatically decreased levels of circulating TG. In the absence of ANGPTL8, acute cold exposure increases rather than decreases circulating TG levels. Thus, our study reveals multi-layered regulation of acute cold response and postprandial TG metabolism, highlighting the key functions of ANGPTL3, 4, and 8 in response to acute cold exposure.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100751"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100751","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Triglyceride-rich lipoproteins (TRLs) carry lipids in the bloodstream, where the fatty acid moieties are liberated by lipoprotein lipase (LPL) and taken up by peripheral tissues such as brown adipose tissue (BAT) and white adipose tissue (WAT), whereas the remaining cholesterol-rich remnant particles are cleared mainly by the liver. Elevated triglyceride (TG) levels and prolonged circulation of cholesterol-rich remnants are risk factors for cardiovascular diseases. Acute cold exposure decreases postprandial TG levels and is a potential therapeutic approach to treat hypertriglyceridemia. However, how acute cold exposure regulates TG metabolism remains incompletely understood. In the current study, we found that acute cold exposure simultaneously increases postprandial very-low-density lipoprotein (VLDL) production and TG clearance, with the latter playing a dominant role and resulting in decreased TG levels. Acute cold exposure increases LPL activity and TG uptake in BAT, while suppressing LPL activity and TG uptake in WAT. Mechanistically, acute cold exposure increases BAT LPL activity through transcriptional upregulation of Lpl and posttranscriptional regulation via inhibiting the hepatic insulin-ANGPTL8-ANGPTL3 axis, while suppressing WAT LPL activity through upregulation of ANGPTL4. Angptl8 knockout mice have dramatically decreased levels of circulating TG. In the absence of ANGPTL8, acute cold exposure increases rather than decreases circulating TG levels. Thus, our study reveals multi-layered regulation of acute cold response and postprandial TG metabolism, highlighting the key functions of ANGPTL3, 4, and 8 in response to acute cold exposure.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.