Quantification of cinpanemab (BIIB054) binding to α-synuclein in cerebrospinal fluid of phase 1 single ascending dose samples.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Journal of Pharmacology and Experimental Therapeutics Pub Date : 2025-01-01 Epub Date: 2024-11-22 DOI:10.1124/jpet.124.002199
YuTing Liu, Minhua Yang, Kyle Fraser, Danielle Graham, Paul H Weinreb, Andreas Weihofen, Warren D Hirst, Jesse M Cedarbaum, Blake Pepinsky
{"title":"Quantification of cinpanemab (BIIB054) binding to α-synuclein in cerebrospinal fluid of phase 1 single ascending dose samples.","authors":"YuTing Liu, Minhua Yang, Kyle Fraser, Danielle Graham, Paul H Weinreb, Andreas Weihofen, Warren D Hirst, Jesse M Cedarbaum, Blake Pepinsky","doi":"10.1124/jpet.124.002199","DOIUrl":null,"url":null,"abstract":"<p><p>Through its pathological and genetic association with Parkinson disease (PD), α-synuclein (α-syn) remains a favorable therapeutic target that is being investigated using various modalities, including many passive immunotherapy approaches clinically targeting different forms of α-syn and epitopes. Although published studies from some immunotherapy trials have demonstrated engagement in plasma, none has shown direct drug-antigen interactions in the disease-relevant compartment, the central nervous system. Cinpanemab (BIIB054) selectively targets pathological aggregated α-syn with low-affinity binding to monomeric forms. The avidity-driven binding, low drug concentration, and the very low α-syn levels, plus its heterogeneous nature in cerebrospinal fluid (CSF), made it impossible to measure drug-target interactions by conventional assays. Here we overcame these challenges by using zero-length crosslinking to stabilize the BIIB054-α-syn complexes and then quantified the crosslinked complexes using a Meso Scale Discovery electrochemiluminescence assay. CSF samples from healthy volunteers (HVs, n = 46) and individuals with PD (PD, n = 18) from study 228HV101 (phase 1 clinical trial of BIIB054) demonstrated dose- and time-dependent binding of cinpanemab to α-syn with measurable complexes detected at doses ≥15 mg/kg. Complex formation displayed a direct positive correlation to drug concentration (Spearman rank correlation = 0.8295 [HV], 0.8032 [PD] P < .0001 [HV, PD]). The observed binding of cinpanemab to α-syn in CSF is consistent with its low intrinsic affinity for α-syn monomer and provides evidence that the drug is behaving with expected binding dynamics in the central nervous system compartment. SIGNIFICANCE STATEMENT: A zero-length crosslinking method with Meso Scale Discovery detection was developed to enable quantification of cinpanemab-α-synuclein (α-syn) complexes in clinical cerebrospinal fluid samples by preventing signal loss caused by their rapid dissociation. Observed dose- and time-dependent binding was consistent with cinpanemab's affinity for α-syn and provided confidence the drug had engaged its target at the desired site of action. This is the first demonstration of α-syn binding by an antibody in clinical samples from the central nervous system.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 1","pages":"100003"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/jpet.124.002199","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Through its pathological and genetic association with Parkinson disease (PD), α-synuclein (α-syn) remains a favorable therapeutic target that is being investigated using various modalities, including many passive immunotherapy approaches clinically targeting different forms of α-syn and epitopes. Although published studies from some immunotherapy trials have demonstrated engagement in plasma, none has shown direct drug-antigen interactions in the disease-relevant compartment, the central nervous system. Cinpanemab (BIIB054) selectively targets pathological aggregated α-syn with low-affinity binding to monomeric forms. The avidity-driven binding, low drug concentration, and the very low α-syn levels, plus its heterogeneous nature in cerebrospinal fluid (CSF), made it impossible to measure drug-target interactions by conventional assays. Here we overcame these challenges by using zero-length crosslinking to stabilize the BIIB054-α-syn complexes and then quantified the crosslinked complexes using a Meso Scale Discovery electrochemiluminescence assay. CSF samples from healthy volunteers (HVs, n = 46) and individuals with PD (PD, n = 18) from study 228HV101 (phase 1 clinical trial of BIIB054) demonstrated dose- and time-dependent binding of cinpanemab to α-syn with measurable complexes detected at doses ≥15 mg/kg. Complex formation displayed a direct positive correlation to drug concentration (Spearman rank correlation = 0.8295 [HV], 0.8032 [PD] P < .0001 [HV, PD]). The observed binding of cinpanemab to α-syn in CSF is consistent with its low intrinsic affinity for α-syn monomer and provides evidence that the drug is behaving with expected binding dynamics in the central nervous system compartment. SIGNIFICANCE STATEMENT: A zero-length crosslinking method with Meso Scale Discovery detection was developed to enable quantification of cinpanemab-α-synuclein (α-syn) complexes in clinical cerebrospinal fluid samples by preventing signal loss caused by their rapid dissociation. Observed dose- and time-dependent binding was consistent with cinpanemab's affinity for α-syn and provided confidence the drug had engaged its target at the desired site of action. This is the first demonstration of α-syn binding by an antibody in clinical samples from the central nervous system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
115
审稿时长
1 months
期刊介绍: A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.
期刊最新文献
The long and winding road of schizophrenia drug development. Entourage effects of nonpsychotropic cannabinoids on visceral sensitivity in experimental colitis. Metformin alleviates sphingolipids dysregulation and improves obesity-related kidney disease in high-fat diet rats. Cocaine reinstates extinguished food responding in male cynomolgus monkeys with a history of self-administering cocaine under a concurrent drug versus food choice paradigm. Combined stress and alcohol exposure: Synergistic effects on alcohol-seeking behaviors and neuroinflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1