The protective effect of amitriptyline on experimental colitis through inhibiting TLR-4/MD-2 signaling pathway.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Journal of Pharmacology and Experimental Therapeutics Pub Date : 2025-01-01 Epub Date: 2024-11-22 DOI:10.1124/jpet.124.002207
Chengcheng Zeng, Qingqing Zhu, Wu Peng, Chen Huang, Huiting Chen, Hongli Huang, Yongjian Zhou, Chong Zhao
{"title":"The protective effect of amitriptyline on experimental colitis through inhibiting TLR-4/MD-2 signaling pathway.","authors":"Chengcheng Zeng, Qingqing Zhu, Wu Peng, Chen Huang, Huiting Chen, Hongli Huang, Yongjian Zhou, Chong Zhao","doi":"10.1124/jpet.124.002207","DOIUrl":null,"url":null,"abstract":"<p><p>Amitriptyline, a pleiotropic tricyclic antidepressant, possesses antioxidant and anti-inflammatory properties. Despite its diverse benefits, the specific effects of amitriptyline on inflammatory bowel disease (IBD) are not yet well defined. To explore this, we used a dextran sulfate sodium (DSS)-induced colitis model to examine the anti-inflammatory effects of amitriptyline and the underlying mechanisms by which it operates. Our research revealed that amitriptyline is effective in alleviating several pathological manifestations associated with colitis. This includes improving body weight retention, reducing disease activity index, lessening of colon length shortening, and repairing of colonic mucosal damage. Treatment with amitriptyline significantly protected mucosal injury by preserving the population of goblet cells and increasing the expression of tight junction proteins. Furthermore, we observed that amitriptyline effectively countered immune cell infiltration, specifically neutrophils and macrophages, while simultaneously lowering the levels of inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-1β, and IL-6. Additionally, RNA sequencing analysis pointed to the potential involvement of the Toll-like receptor (TLR) pathway in the anticolitic effects induced by amitriptyline. Subsequent Western blot analysis indicated that amitriptyline significantly inhibited the TLR-4-mediated nuclear factor (NF)-κB signaling pathway. To bolster our findings, in vitro studies demonstrated that amitriptyline downregulated the TLR-4/NF-κB/mitogen-activated protein kinase signaling cascades in mouse macrophages stimulated with lipopolysaccharide. Further molecular investigations revealed that amitriptyline was able to suppress the elevated expression of myeloid differentiation factor 2 that lipopolysaccharide stimulation typically induces. In summary, our findings suggest that amitriptyline effectively mitigates DSS-induced colitis in mice through the inhibition of TLR-4/myeloid differentiation 2 pathway signaling, indicating its potential repurposing for IBD treatment. SIGNIFICANCE STATEMENT: The potential of using amitriptyline in treating inflammatory bowel disease appears promising, leveraging its established safety and dosing profile as an antidepressant. The study results show that amitriptyline can alleviate pathological symptoms, inflammation, and intestinal mucosal damage in mice with colitis induced by DSS. The protective effect observed appears to be linked to the inhibition of TLR-4/myeloid differentiation 2 signaling pathway. By exploring novel applications for existing medications, we can optimize amitriptyline's efficacy and broaden its impact in both medical and commercial contexts.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 1","pages":"100024"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/jpet.124.002207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Amitriptyline, a pleiotropic tricyclic antidepressant, possesses antioxidant and anti-inflammatory properties. Despite its diverse benefits, the specific effects of amitriptyline on inflammatory bowel disease (IBD) are not yet well defined. To explore this, we used a dextran sulfate sodium (DSS)-induced colitis model to examine the anti-inflammatory effects of amitriptyline and the underlying mechanisms by which it operates. Our research revealed that amitriptyline is effective in alleviating several pathological manifestations associated with colitis. This includes improving body weight retention, reducing disease activity index, lessening of colon length shortening, and repairing of colonic mucosal damage. Treatment with amitriptyline significantly protected mucosal injury by preserving the population of goblet cells and increasing the expression of tight junction proteins. Furthermore, we observed that amitriptyline effectively countered immune cell infiltration, specifically neutrophils and macrophages, while simultaneously lowering the levels of inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-1β, and IL-6. Additionally, RNA sequencing analysis pointed to the potential involvement of the Toll-like receptor (TLR) pathway in the anticolitic effects induced by amitriptyline. Subsequent Western blot analysis indicated that amitriptyline significantly inhibited the TLR-4-mediated nuclear factor (NF)-κB signaling pathway. To bolster our findings, in vitro studies demonstrated that amitriptyline downregulated the TLR-4/NF-κB/mitogen-activated protein kinase signaling cascades in mouse macrophages stimulated with lipopolysaccharide. Further molecular investigations revealed that amitriptyline was able to suppress the elevated expression of myeloid differentiation factor 2 that lipopolysaccharide stimulation typically induces. In summary, our findings suggest that amitriptyline effectively mitigates DSS-induced colitis in mice through the inhibition of TLR-4/myeloid differentiation 2 pathway signaling, indicating its potential repurposing for IBD treatment. SIGNIFICANCE STATEMENT: The potential of using amitriptyline in treating inflammatory bowel disease appears promising, leveraging its established safety and dosing profile as an antidepressant. The study results show that amitriptyline can alleviate pathological symptoms, inflammation, and intestinal mucosal damage in mice with colitis induced by DSS. The protective effect observed appears to be linked to the inhibition of TLR-4/myeloid differentiation 2 signaling pathway. By exploring novel applications for existing medications, we can optimize amitriptyline's efficacy and broaden its impact in both medical and commercial contexts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
115
审稿时长
1 months
期刊介绍: A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.
期刊最新文献
Clinical development of the GluN2B-selective NMDA receptor inhibitor NP10679 for the treatment of neurologic deficit after subarachnoid hemorrhage. Contrasting the reinforcing effects of the novel dopamine transport inhibitors JJC8-088 and JJC8-091 in monkeys: Potential translation to medication assisted treatment. Evidence for cytoprotective autophagy in response to HER2-targeted monoclonal antibodies. Innovation through imitation: IL-33 decoys show promise in pulmonary fibrosis. Interrogating a compound library in search of an inhibitor for TREM-like transcript-1 to fibrinogen binding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1