Novel fusion protein REA induces robust prime protection against tuberculosis in mice.

IF 6.9 1区 医学 Q1 IMMUNOLOGY NPJ Vaccines Pub Date : 2025-01-31 DOI:10.1038/s41541-025-01077-1
Sintayehu Kebede Gurmessa, Han-Gyu Choi, Yong Woo Back, Zongyou Jiang, Thuy An Pham, Seunga Choi, Hwa-Jung Kim
{"title":"Novel fusion protein REA induces robust prime protection against tuberculosis in mice.","authors":"Sintayehu Kebede Gurmessa, Han-Gyu Choi, Yong Woo Back, Zongyou Jiang, Thuy An Pham, Seunga Choi, Hwa-Jung Kim","doi":"10.1038/s41541-025-01077-1","DOIUrl":null,"url":null,"abstract":"<p><p>While many novel candidates for tuberculosis vaccines are presently undergoing pre-clinical or clinical trials, none of them have been able to eliminate infection entirely. In this study, we engineered a potent chimeric protein vaccine candidate, Rv2299cD2D3-ESAT-6-Ag85B (REA), which induced Th1 and Th17 responses via dendritic cell maturation. REA-activated macrophages operated the killing mechanisms of Mycobacterium tuberculosis (MTB), such as phagosomal maturation and phagolysosome fusion, through the (PI3K)-p38 MAPK-Ca<sup>2+</sup>-NADPH oxidase pathway. Dendritic cells and macrophages activated by REA elicited synergistic anti-mycobacterial responses. Notably, REA-immunized mice suppressed MTB growth to undetectable levels at 16 weeks post-infection, which was supported by gross and pathologic findings and acid-fast staining of the lung tissues, and maintained antigen-specific multifunctional IFN-γ<sup>+</sup>IL-2<sup>+</sup>TNF-α CD4<sup>+</sup> T and long-lasting T cells producing cytokines in the tissues. Our findings suggest that REA is an outstanding prime prophylactic vaccine candidate against tuberculosis.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"10 1","pages":"20"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-025-01077-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

While many novel candidates for tuberculosis vaccines are presently undergoing pre-clinical or clinical trials, none of them have been able to eliminate infection entirely. In this study, we engineered a potent chimeric protein vaccine candidate, Rv2299cD2D3-ESAT-6-Ag85B (REA), which induced Th1 and Th17 responses via dendritic cell maturation. REA-activated macrophages operated the killing mechanisms of Mycobacterium tuberculosis (MTB), such as phagosomal maturation and phagolysosome fusion, through the (PI3K)-p38 MAPK-Ca2+-NADPH oxidase pathway. Dendritic cells and macrophages activated by REA elicited synergistic anti-mycobacterial responses. Notably, REA-immunized mice suppressed MTB growth to undetectable levels at 16 weeks post-infection, which was supported by gross and pathologic findings and acid-fast staining of the lung tissues, and maintained antigen-specific multifunctional IFN-γ+IL-2+TNF-α CD4+ T and long-lasting T cells producing cytokines in the tissues. Our findings suggest that REA is an outstanding prime prophylactic vaccine candidate against tuberculosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Vaccines
NPJ Vaccines Immunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍: Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.
期刊最新文献
A systematised review and evidence synthesis on the broader societal impact of vaccines against Salmonella. Cyclic di AMP phosphodiesterase nanovaccine elicits protective immunity against Burkholderia cenocepacia infection in mice. Safety and immunogenicity in humans of enterotoxigenic Escherichia coli double mutant heat-labile toxin administered intradermally. Novel fusion protein REA induces robust prime protection against tuberculosis in mice. Identifying falsified COVID-19 vaccines by analysing vaccine vial label and excipient profiles using MALDI-ToF mass spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1