Mathematical models of intercellular signaling in breast cancer.

IF 12.1 1区 医学 Q1 ONCOLOGY Seminars in cancer biology Pub Date : 2025-01-29 DOI:10.1016/j.semcancer.2025.01.005
Frederick R Adler, Jason I Griffiths
{"title":"Mathematical models of intercellular signaling in breast cancer.","authors":"Frederick R Adler, Jason I Griffiths","doi":"10.1016/j.semcancer.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>The development and regulation of healthy and cancerous breast tissue is guided by communication between cells. Diverse signals are exchanged between cancer cells and non-cancerous cells of the tumor microenvironment (TME), influencing all stages of tumor progression. Mathematical models are essential for understanding how this complex network determines cancer progression and the effectiveness of treatment.</p><p><strong>Methodology: </strong>We reviewed the current dynamical mathematical models of intercellular signaling in breast cancer, examining models with cancer cells only, fibroblasts, endothelial cells, macrophages and the immune system as whole. We categorized the goals and complexity of these models, to highlight how they can explain many features of cancer emergence and progression.</p><p><strong>Results: </strong>We found that dynamical models of intercellular signaling can elucidate tissue-level dysregulation in cancer by explaining: i) maintenance of non-heritable intratumor phenotypic heterogeneity, ii) transitions between tumor dormancy and accelerated invasive growth, iii) stromal support of tumor vascularization and growth factor enrichment and iv) suppression of immune infiltration and cancer surveillance. These models also provide a framework to propose novel TME-targeting treatment strategies. However, most models were focused on a highly selected and small set of signaling interactions between a few cell types, and their translational applicability were severely limited by the availability of tumor-specific data for personalized model calibration.</p><p><strong>Conclusions and implications: </strong>Mathematical models of breast cancer have many challenges and opportunities to incorporate signaling. The four key challenges are: 1) finding ways to treat signaling networks as a context-dependent language that incorporates non-linear and non-additive responses, 2) identifying the key cell phenotypes that signals control and understanding the feedbacks between signals and phenotype that determine the progression of cancer, (3) estimating parameters of specific patient tumors early in treatment, 4) linking models with novel data collection methods that have single cell and spatial resolution. As our approaches advance, it is our hope that dynamical mathematical models of inter-cellular signaling can play a central role in identifying and testing new treatment strategies as well as forecasting impacts of disease treatment.</p>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.semcancer.2025.01.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: The development and regulation of healthy and cancerous breast tissue is guided by communication between cells. Diverse signals are exchanged between cancer cells and non-cancerous cells of the tumor microenvironment (TME), influencing all stages of tumor progression. Mathematical models are essential for understanding how this complex network determines cancer progression and the effectiveness of treatment.

Methodology: We reviewed the current dynamical mathematical models of intercellular signaling in breast cancer, examining models with cancer cells only, fibroblasts, endothelial cells, macrophages and the immune system as whole. We categorized the goals and complexity of these models, to highlight how they can explain many features of cancer emergence and progression.

Results: We found that dynamical models of intercellular signaling can elucidate tissue-level dysregulation in cancer by explaining: i) maintenance of non-heritable intratumor phenotypic heterogeneity, ii) transitions between tumor dormancy and accelerated invasive growth, iii) stromal support of tumor vascularization and growth factor enrichment and iv) suppression of immune infiltration and cancer surveillance. These models also provide a framework to propose novel TME-targeting treatment strategies. However, most models were focused on a highly selected and small set of signaling interactions between a few cell types, and their translational applicability were severely limited by the availability of tumor-specific data for personalized model calibration.

Conclusions and implications: Mathematical models of breast cancer have many challenges and opportunities to incorporate signaling. The four key challenges are: 1) finding ways to treat signaling networks as a context-dependent language that incorporates non-linear and non-additive responses, 2) identifying the key cell phenotypes that signals control and understanding the feedbacks between signals and phenotype that determine the progression of cancer, (3) estimating parameters of specific patient tumors early in treatment, 4) linking models with novel data collection methods that have single cell and spatial resolution. As our approaches advance, it is our hope that dynamical mathematical models of inter-cellular signaling can play a central role in identifying and testing new treatment strategies as well as forecasting impacts of disease treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Seminars in cancer biology
Seminars in cancer biology 医学-肿瘤学
CiteScore
26.80
自引率
4.10%
发文量
347
审稿时长
15.1 weeks
期刊介绍: Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field. The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies. To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area. The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.
期刊最新文献
Mathematical models of intercellular signaling in breast cancer. Leveraging Epigenetic Alterations in Pancreatic Ductal Adenocarcinoma for Clinical Applications. The dual function of autophagy in doxorubicin-induced cardiotoxicity: Mechanism and natural products. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Fungi, immunosenescence and cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1