Cadmium induces spontaneous abortion by impairing endometrial stromal cell decidualization

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY Toxicology Pub Date : 2025-02-01 DOI:10.1016/j.tox.2025.154069
Xue-Ke Zhang , Xuan Li , Xing-Xing Han , Dong-Ying Sun , Yu-Qin Wang , Zi-Zhuo Cao , Lu Liu , Zi-Han Meng , Guo-Jing Li , Yu-Jie Dong , Dan-Yang Li , Xiao-Qing Peng , Hui-Juan Zou , Dong Zhang , Xiao-Feng Xu
{"title":"Cadmium induces spontaneous abortion by impairing endometrial stromal cell decidualization","authors":"Xue-Ke Zhang ,&nbsp;Xuan Li ,&nbsp;Xing-Xing Han ,&nbsp;Dong-Ying Sun ,&nbsp;Yu-Qin Wang ,&nbsp;Zi-Zhuo Cao ,&nbsp;Lu Liu ,&nbsp;Zi-Han Meng ,&nbsp;Guo-Jing Li ,&nbsp;Yu-Jie Dong ,&nbsp;Dan-Yang Li ,&nbsp;Xiao-Qing Peng ,&nbsp;Hui-Juan Zou ,&nbsp;Dong Zhang ,&nbsp;Xiao-Feng Xu","doi":"10.1016/j.tox.2025.154069","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium (Cd) is a toxic heavy metal with a high propensity to accumulate within the body, and Cd accumulation has been shown to cause organ damage. However, it is unclear whether Cd accumulation is a cause of impaired decidualization, which induces to spontaneous abortion (SA). In this study, we found that the decidual Cd concentration was increased in patients with SA and positively correlated with the occurrence of SA. The levels of two decidualization markers (prolactin, PRL and insulin-like growth factor binding protein 1, IGFBP1) were reduced in the decidua of all-cause SA patients. Using 8-week ICR female mice, we further established a uterus-specific Cd accumulation mouse model and verified that Cd-accumulating mice had increased numbers of absorbed fetuses and defective decidualization. Finally, using in <em>vitro</em>-cultured human ENdometrial stromal cells (hEnSCs), we found that Cd accumulation significantly inhibited decidualization; and moreover, Cd treatment downregulated the regulatory genes upstream of PRL and IGFBP1 such as PGR, ESR1, ESR2 and FOXO1. This study suggests that Cd accumulation could produce impaired decidualization by downregulating the upstream regulators of PRL and IGFBP1, thereby increasing the risk of SA. Our study offered new possibilities for the prevention and treatment of spontaneous abortion.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"511 ","pages":"Article 154069"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X25000253","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Cadmium (Cd) is a toxic heavy metal with a high propensity to accumulate within the body, and Cd accumulation has been shown to cause organ damage. However, it is unclear whether Cd accumulation is a cause of impaired decidualization, which induces to spontaneous abortion (SA). In this study, we found that the decidual Cd concentration was increased in patients with SA and positively correlated with the occurrence of SA. The levels of two decidualization markers (prolactin, PRL and insulin-like growth factor binding protein 1, IGFBP1) were reduced in the decidua of all-cause SA patients. Using 8-week ICR female mice, we further established a uterus-specific Cd accumulation mouse model and verified that Cd-accumulating mice had increased numbers of absorbed fetuses and defective decidualization. Finally, using in vitro-cultured human ENdometrial stromal cells (hEnSCs), we found that Cd accumulation significantly inhibited decidualization; and moreover, Cd treatment downregulated the regulatory genes upstream of PRL and IGFBP1 such as PGR, ESR1, ESR2 and FOXO1. This study suggests that Cd accumulation could produce impaired decidualization by downregulating the upstream regulators of PRL and IGFBP1, thereby increasing the risk of SA. Our study offered new possibilities for the prevention and treatment of spontaneous abortion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
期刊最新文献
Effects of Methoxychlor on Broiler Gut Microbiota and Liver and its Residue Accumulation Risk to Human Health. Molecular mechanism of programmed cell death in drug-induced neuronal damage: A special focus on ketamine-induced neurotoxicity Synergistic effects of lead and copper co-exposure on promoting oxidative stress and apoptosis in the neuronal cells Editorial Board Copper oxide nanoparticles disrupt lysosomal function and promote foam cell formation in RAW264.7 macrophages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1