Aline M S Yamashita, Bayardo I Garay, Hyunkee Kim, Darko Bosnakovski, Juan E Abrahante, Karim Azzag, Phablo Abreu, Aaron Ahlquist, Rita C R Perlingeiro
{"title":"Effect of Notch1 signaling on muscle engraftment and maturation from pluripotent stem cells.","authors":"Aline M S Yamashita, Bayardo I Garay, Hyunkee Kim, Darko Bosnakovski, Juan E Abrahante, Karim Azzag, Phablo Abreu, Aaron Ahlquist, Rita C R Perlingeiro","doi":"10.1016/j.stemcr.2024.102396","DOIUrl":null,"url":null,"abstract":"<p><p>Pax3-induced pluripotent stem cell-derived myogenic progenitors display an embryonic molecular signature but become postnatal upon transplantation. Because this correlates with upregulation of Notch signaling, here we probed whether NOTCH1 is required for in vivo maturation by performing gain- and loss-of-function studies in inducible Pax3 (iPax3) myogenic progenitors. Transplantation studies revealed that Notch1 signaling did not change the number of donor-derived fibers; however, the NOTCH1 overexpression cohorts showed enhanced satellite cell engraftment and more mature fibers, as indicated by fewer fibers expressing the embryonic myosin heavy-chain isoform and more type IIX fibers. While donor-derived Pax7+ cells were detected in all transplants, in the absence of Notch1, secondary grafts exhibited a high fraction of these cells in the interstitial space, indicating that NOTCH1 is required for proper satellite cell homing. Transcriptional profiling of NOTCH1-modified donor-derived satellite cells suggests that this may be due to changes in the extracellular matrix organization, cell cycle, and metabolism.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102396"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.102396","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Pax3-induced pluripotent stem cell-derived myogenic progenitors display an embryonic molecular signature but become postnatal upon transplantation. Because this correlates with upregulation of Notch signaling, here we probed whether NOTCH1 is required for in vivo maturation by performing gain- and loss-of-function studies in inducible Pax3 (iPax3) myogenic progenitors. Transplantation studies revealed that Notch1 signaling did not change the number of donor-derived fibers; however, the NOTCH1 overexpression cohorts showed enhanced satellite cell engraftment and more mature fibers, as indicated by fewer fibers expressing the embryonic myosin heavy-chain isoform and more type IIX fibers. While donor-derived Pax7+ cells were detected in all transplants, in the absence of Notch1, secondary grafts exhibited a high fraction of these cells in the interstitial space, indicating that NOTCH1 is required for proper satellite cell homing. Transcriptional profiling of NOTCH1-modified donor-derived satellite cells suggests that this may be due to changes in the extracellular matrix organization, cell cycle, and metabolism.
期刊介绍:
Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.