Enhancing T cell cytotoxicity in multiple myeloma with bispecific αPD-L1 × αCD3 T cell engager-armed T cells and low-dose bortezomib therapy.

Nunghathai Sawasdee, Chutamas Thepmalee, Mutita Junking, Seiji Okada, Aussara Panya, Pa-Thai Yenchitsomanus
{"title":"Enhancing T cell cytotoxicity in multiple myeloma with bispecific αPD-L1 × αCD3 T cell engager-armed T cells and low-dose bortezomib therapy.","authors":"Nunghathai Sawasdee, Chutamas Thepmalee, Mutita Junking, Seiji Okada, Aussara Panya, Pa-Thai Yenchitsomanus","doi":"10.1016/j.biopha.2025.117878","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by frequent relapse due to acquired treatment resistance, underscoring the need for innovative therapies, particularly for relapsed cases. This study explores the effects of low-dose bortezomib (BTZ) on programmed death ligand 1 (PD-L1) expression in MM cell lines and its potential to enhance T cell-mediated anti-tumor responses. Utilizing this PD-L1 upregulation, we employed bispecific αPD-L1 × αCD3 T cell engager-armed T cells (BATs) to block PD-L1 signaling and activate T cells. Flow cytometry confirmed that BATs selectively bound CD3 on T cells and PD-L1 on cancer cells, inducing T cell activation and proliferation without directly affecting cancer cell viability. BATs' cytotoxic activity was evaluated in MM cell lines with or without BTZ-induced PD-L1 expression. While KMS-12-PE cells showed no significant response, BATs significantly increased cell death in L363 cells, with further enhancement by BTZ. In RPMI-8226 cells, BATs demonstrated robust cytotoxicity, further amplified by BTZ. These results suggest that BATs, particularly in combination with BTZ, represent a promising strategy for treating MM, including bortezomib-resistant cases.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"184 ","pages":"117878"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biopha.2025.117878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by frequent relapse due to acquired treatment resistance, underscoring the need for innovative therapies, particularly for relapsed cases. This study explores the effects of low-dose bortezomib (BTZ) on programmed death ligand 1 (PD-L1) expression in MM cell lines and its potential to enhance T cell-mediated anti-tumor responses. Utilizing this PD-L1 upregulation, we employed bispecific αPD-L1 × αCD3 T cell engager-armed T cells (BATs) to block PD-L1 signaling and activate T cells. Flow cytometry confirmed that BATs selectively bound CD3 on T cells and PD-L1 on cancer cells, inducing T cell activation and proliferation without directly affecting cancer cell viability. BATs' cytotoxic activity was evaluated in MM cell lines with or without BTZ-induced PD-L1 expression. While KMS-12-PE cells showed no significant response, BATs significantly increased cell death in L363 cells, with further enhancement by BTZ. In RPMI-8226 cells, BATs demonstrated robust cytotoxicity, further amplified by BTZ. These results suggest that BATs, particularly in combination with BTZ, represent a promising strategy for treating MM, including bortezomib-resistant cases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activation of α7nAch receptors ameliorates α-synuclein pathology in the brain and gut of a subacute MPTP mouse model of Parkinson's disease. Targeting KEAP1-mediated IKKβ degradation strategy for colitis-associated colorectal carcinogenesis: The potential of xanthohumol. Celastrol has beneficial effects on pulmonary hypertension associated with bronchopulmonary dysplasia: Preclinical study outcomes. Engineered PepFect14 analog for efficient cellular delivery of oligonucleotides. Enhancing T cell cytotoxicity in multiple myeloma with bispecific αPD-L1 × αCD3 T cell engager-armed T cells and low-dose bortezomib therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1