3D-printed radiopaque episcleral plaques with radioactive collimating cavities for enhanced dose delivery in brachytherapy

IF 1.7 4区 医学 Q4 ONCOLOGY Brachytherapy Pub Date : 2025-03-01 DOI:10.1016/j.brachy.2024.12.001
Souheib Zekraoui , Théophraste Lescot , Mahdokht Akbari Taemeh , Marc-André Fortin
{"title":"3D-printed radiopaque episcleral plaques with radioactive collimating cavities for enhanced dose delivery in brachytherapy","authors":"Souheib Zekraoui ,&nbsp;Théophraste Lescot ,&nbsp;Mahdokht Akbari Taemeh ,&nbsp;Marc-André Fortin","doi":"10.1016/j.brachy.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><h3>PURPOSE</h3><div>Episcleral plaque brachytherapy (EPBT) is a well-established treatment. However, the lateral dose to healthy tissues, such as the sclera, retina, and optic nerve is often problematic and results in side effects. This study proposes an innovative approach based on the 3D-printing of radiopaque polymer plaques featuring cylindrical radioactive cavities (CRC) with a potential collimating effect on radiation delivery to tumors.</div></div><div><h3>METHODS AND MATERIALS</h3><div>A CAD model based on the COMS protocol was created and 3D-printed using radiopaque PEEK polymer. Cylindrical cavities (1 mm depth/diameter) were evenly spaced on the plaque's inner surface. Two radioactive layouts (RL<sub>1</sub>: uniform loading; RL<sub>2</sub>: radial gradient loading) were designed. µCT imaging was used to assess the geometric accuracy of the 3D-printed CRC EPs, and dose distribution was evaluated for the two (2) radioactive layouts using MAGIC-pf gel dosimetry and <em>T<sub>2</sub></em>-weighted MRI. The resulting dose profiles were compared with those generated by both COMS and SEP plaques.</div></div><div><h3>RESULTS</h3><div>Radiopaque CRC EPs showed higher central axis dose deposition while minimizing lateral overexposure compared to COMS and SEP plaques, while also providing robust back-shielding. Dose profiles from RL<sub>1</sub> CRC EPs (uniform layout) extended deeper into the eye, whereas RL<sub>2</sub> CRC EPs (with gradient) exhibited a more rapid dose fall-off, producing a concentrated, spherical dose distribution.</div></div><div><h3>CONCLUSIONS</h3><div>3D-printed radiopaque EPs with radioactivity encapsulated in cylindrical cavities demonstrated the ability to achieve more forward-projected dose profiles in EPBT. This fabrication design and a modulated radioactivity distribution across the EP surface would enable more precise and deeper dose delivery while reducing radiation exposure to lateral healthy tissues.</div></div>","PeriodicalId":55334,"journal":{"name":"Brachytherapy","volume":"24 2","pages":"Pages 354-363"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brachytherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1538472124004641","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

PURPOSE

Episcleral plaque brachytherapy (EPBT) is a well-established treatment. However, the lateral dose to healthy tissues, such as the sclera, retina, and optic nerve is often problematic and results in side effects. This study proposes an innovative approach based on the 3D-printing of radiopaque polymer plaques featuring cylindrical radioactive cavities (CRC) with a potential collimating effect on radiation delivery to tumors.

METHODS AND MATERIALS

A CAD model based on the COMS protocol was created and 3D-printed using radiopaque PEEK polymer. Cylindrical cavities (1 mm depth/diameter) were evenly spaced on the plaque's inner surface. Two radioactive layouts (RL1: uniform loading; RL2: radial gradient loading) were designed. µCT imaging was used to assess the geometric accuracy of the 3D-printed CRC EPs, and dose distribution was evaluated for the two (2) radioactive layouts using MAGIC-pf gel dosimetry and T2-weighted MRI. The resulting dose profiles were compared with those generated by both COMS and SEP plaques.

RESULTS

Radiopaque CRC EPs showed higher central axis dose deposition while minimizing lateral overexposure compared to COMS and SEP plaques, while also providing robust back-shielding. Dose profiles from RL1 CRC EPs (uniform layout) extended deeper into the eye, whereas RL2 CRC EPs (with gradient) exhibited a more rapid dose fall-off, producing a concentrated, spherical dose distribution.

CONCLUSIONS

3D-printed radiopaque EPs with radioactivity encapsulated in cylindrical cavities demonstrated the ability to achieve more forward-projected dose profiles in EPBT. This fabrication design and a modulated radioactivity distribution across the EP surface would enable more precise and deeper dose delivery while reducing radiation exposure to lateral healthy tissues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brachytherapy
Brachytherapy 医学-核医学
CiteScore
3.40
自引率
21.10%
发文量
119
审稿时长
9.1 weeks
期刊介绍: Brachytherapy is an international and multidisciplinary journal that publishes original peer-reviewed articles and selected reviews on the techniques and clinical applications of interstitial and intracavitary radiation in the management of cancers. Laboratory and experimental research relevant to clinical practice is also included. Related disciplines include medical physics, medical oncology, and radiation oncology and radiology. Brachytherapy publishes technical advances, original articles, reviews, and point/counterpoint on controversial issues. Original articles that address any aspect of brachytherapy are invited. Letters to the Editor-in-Chief are encouraged.
期刊最新文献
Masthead Table of Contents Editorial Board Towards U-Net-based intraoperative 2D dose prediction in high dose rate prostate brachytherapy High-dose-rate (2 fractions of 13.5 Gy) and low-dose-rate brachytherapy as monotherapy in prostate cancer. Long term outcomes and predictive value of nadir prostate-specific antigen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1