{"title":"Melatonin mitigates UV-induced tumorigenesis and suppresses hearing function deterioration in Xpa-deficient mice.","authors":"Mariko Tsujimoto, Takeshi Fujita, Tatsuya Furukawa, Yaeno Arima, Ken-Ichi Nibu, Chikako Nishigori","doi":"10.1016/j.jdermsci.2025.01.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Xeroderma pigmentosum (XP) is caused by impaired DNA repair of UV-induced dipyrimidine-photoproducts. XP cells also show impaired repair/removal of ROS or oxidative DNA lesions caused by UV or 4-nitroquinolline 1-oxide (4NQO). Gene profiling indicated that inflammatory response-related genes are significantly upregulated after UV exposure in XP-A model mice.</p><p><strong>Objective: </strong>Since XP cells are in the state of oxidative stress and inflammation, we aimed to search for therapeutic agents from anti-oxidants/anti-inflammatory drugs, that potentially improve XP symptoms.</p><p><strong>Methods: </strong>Several antioxidants were examined for reducing 4NQO-induced oxidative cytotoxicity or UV-induced oxidative DNA damage in XP-A cells. Among them, we focused on melatonin and evaluated its improving effect for Xpa-deficient MEF on UV-induced cytotoxicity and ROS production, and for Xpa-deficient mice on UV-induced skin tumorigenesis and auditory brainstem responses as one of the neurological symptoms.</p><p><strong>Results: </strong>Melatonin and nicotinamide attenuated 4NQO-induced oxidative cytotoxicity. UV-induced intracellular ROS production and cytotoxicity were improved by melatonin for Xpa-deficient MEF. Finally, the administration of melatonin mitigated UV-induced skin inflammation and tumorigenesis and suppressed hearing deterioration in Xpa-deficient mice.</p><p><strong>Conclusion: </strong>Our results show that melatonin could alleviate XP symptoms through its anti-inflammatory and antioxidant properties.</p>","PeriodicalId":94076,"journal":{"name":"Journal of dermatological science","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dermatological science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jdermsci.2025.01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Xeroderma pigmentosum (XP) is caused by impaired DNA repair of UV-induced dipyrimidine-photoproducts. XP cells also show impaired repair/removal of ROS or oxidative DNA lesions caused by UV or 4-nitroquinolline 1-oxide (4NQO). Gene profiling indicated that inflammatory response-related genes are significantly upregulated after UV exposure in XP-A model mice.
Objective: Since XP cells are in the state of oxidative stress and inflammation, we aimed to search for therapeutic agents from anti-oxidants/anti-inflammatory drugs, that potentially improve XP symptoms.
Methods: Several antioxidants were examined for reducing 4NQO-induced oxidative cytotoxicity or UV-induced oxidative DNA damage in XP-A cells. Among them, we focused on melatonin and evaluated its improving effect for Xpa-deficient MEF on UV-induced cytotoxicity and ROS production, and for Xpa-deficient mice on UV-induced skin tumorigenesis and auditory brainstem responses as one of the neurological symptoms.
Results: Melatonin and nicotinamide attenuated 4NQO-induced oxidative cytotoxicity. UV-induced intracellular ROS production and cytotoxicity were improved by melatonin for Xpa-deficient MEF. Finally, the administration of melatonin mitigated UV-induced skin inflammation and tumorigenesis and suppressed hearing deterioration in Xpa-deficient mice.
Conclusion: Our results show that melatonin could alleviate XP symptoms through its anti-inflammatory and antioxidant properties.