Fat-Free Mass: Friend or Foe to Metabolic Health?

IF 9.4 1区 医学 Q1 GERIATRICS & GERONTOLOGY Journal of Cachexia Sarcopenia and Muscle Pub Date : 2025-02-02 DOI:10.1002/jcsm.13714
Christopher J. Oliver, Mike Climstein, Nedeljka Rosic, Anja Bosy-Westphal, Grant Tinsley, Stephen Myers
{"title":"Fat-Free Mass: Friend or Foe to Metabolic Health?","authors":"Christopher J. Oliver,&nbsp;Mike Climstein,&nbsp;Nedeljka Rosic,&nbsp;Anja Bosy-Westphal,&nbsp;Grant Tinsley,&nbsp;Stephen Myers","doi":"10.1002/jcsm.13714","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Fat mass (FM) and fat-free mass (FFM) are body composition estimates commonly reported in research studies and clinical settings. Recently, fat-free mass indexed to height (fat-free mass index; FFMI) has been shown to be positively associated with impaired insulin sensitivity or insulin resistance. Consequently, hypertrophic resistance training which can increase FFM was also questioned. This paper sets out to evaluate these propositions.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In this narrative review, we discuss possible reasons that link FFMI to adverse metabolic health outcomes including the limitations of the body composition model that utilizes FFM. The safety of resistance training is also briefly discussed.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Approximately 50% of FFM is comprised of skeletal muscle (SM), with the other 50% being viscera, skin, and bone; FFM and SM cannot be conflated. FFM and fat mass (FM) can both rise with increasing body weight and adiposity, indicating a positive correlation between the two compartments. Risk assessment models not adequately adjusting for this correlation may cause erroneous conclusions, however which way FM and FFM are indexed. Adipose tissue accumulation with weight gain, measured by dual-energy X-ray absorptiometry or bioelectrical impedance, can inflate FFM estimates owing to increased connective tissue. Increased adiposity can also result in fat deposition within skeletal muscle disrupting metabolic health. Importantly, non-skeletal muscle components of the FFM, i.e., the liver and pancreas, both critical in metabolic health, can also be negatively affected by the same lifestyle factors that impact SM. The most frequently used body composition techniques used to estimate FM and FFM cannot detect muscle, liver or pancreas fat infiltration. Prospective evidence demonstrates that resistance training is a safe and effective exercise modality across all ages, especially in older adults experiencing age- or disease-related declines in muscle health.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The association between FFM and insulin resistance is largely an artefact driven by inadequate assessment of skeletal muscle. If FM and FFM are used, at the minimum, they need to be evaluated in context with one another. Body composition methods, such as magnetic resonance imaging, which measures skeletal muscle rather than fat-free mass, and adipose tissue as well as muscle ectopic fat, are preferred methods. Resistance training is important in achieving and maintaining good health across the lifespan. While strength and power are critical components of resistance training, the reduction of skeletal mass through ageing or disease may require hypertrophic training to mitigate and slow down the progression of this often-inevitable process.</p>\n </section>\n </div>","PeriodicalId":48911,"journal":{"name":"Journal of Cachexia Sarcopenia and Muscle","volume":"16 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcsm.13714","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cachexia Sarcopenia and Muscle","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcsm.13714","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Fat mass (FM) and fat-free mass (FFM) are body composition estimates commonly reported in research studies and clinical settings. Recently, fat-free mass indexed to height (fat-free mass index; FFMI) has been shown to be positively associated with impaired insulin sensitivity or insulin resistance. Consequently, hypertrophic resistance training which can increase FFM was also questioned. This paper sets out to evaluate these propositions.

Methods

In this narrative review, we discuss possible reasons that link FFMI to adverse metabolic health outcomes including the limitations of the body composition model that utilizes FFM. The safety of resistance training is also briefly discussed.

Results

Approximately 50% of FFM is comprised of skeletal muscle (SM), with the other 50% being viscera, skin, and bone; FFM and SM cannot be conflated. FFM and fat mass (FM) can both rise with increasing body weight and adiposity, indicating a positive correlation between the two compartments. Risk assessment models not adequately adjusting for this correlation may cause erroneous conclusions, however which way FM and FFM are indexed. Adipose tissue accumulation with weight gain, measured by dual-energy X-ray absorptiometry or bioelectrical impedance, can inflate FFM estimates owing to increased connective tissue. Increased adiposity can also result in fat deposition within skeletal muscle disrupting metabolic health. Importantly, non-skeletal muscle components of the FFM, i.e., the liver and pancreas, both critical in metabolic health, can also be negatively affected by the same lifestyle factors that impact SM. The most frequently used body composition techniques used to estimate FM and FFM cannot detect muscle, liver or pancreas fat infiltration. Prospective evidence demonstrates that resistance training is a safe and effective exercise modality across all ages, especially in older adults experiencing age- or disease-related declines in muscle health.

Conclusions

The association between FFM and insulin resistance is largely an artefact driven by inadequate assessment of skeletal muscle. If FM and FFM are used, at the minimum, they need to be evaluated in context with one another. Body composition methods, such as magnetic resonance imaging, which measures skeletal muscle rather than fat-free mass, and adipose tissue as well as muscle ectopic fat, are preferred methods. Resistance training is important in achieving and maintaining good health across the lifespan. While strength and power are critical components of resistance training, the reduction of skeletal mass through ageing or disease may require hypertrophic training to mitigate and slow down the progression of this often-inevitable process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cachexia Sarcopenia and Muscle
Journal of Cachexia Sarcopenia and Muscle MEDICINE, GENERAL & INTERNAL-
CiteScore
13.30
自引率
12.40%
发文量
234
审稿时长
16 weeks
期刊介绍: The Journal of Cachexia, Sarcopenia and Muscle is a peer-reviewed international journal dedicated to publishing materials related to cachexia and sarcopenia, as well as body composition and its physiological and pathophysiological changes across the lifespan and in response to various illnesses from all fields of life sciences. The journal aims to provide a reliable resource for professionals interested in related research or involved in the clinical care of affected patients, such as those suffering from AIDS, cancer, chronic heart failure, chronic lung disease, liver cirrhosis, chronic kidney failure, rheumatoid arthritis, or sepsis.
期刊最新文献
Circulating Extracellular Vesicles in Alcoholic Liver Disease Affect Skeletal Muscle Homeostasis and Differentiation Multiomics Analysis Reveals Therapeutic Targets for Chronic Kidney Disease With Sarcopenia Targeting Drug Delivery System to Skeletal Muscles: A Comprehensive Review of Different Approaches Long-Term Impact of Physical Activity on Mortality in Adults With Multimorbidity: A 12-Year Cohort Longitudinal Study From the Survey on Health, Ageing and Retirement in Europe Melatonin Ameliorates Age-Related Sarcopenia via the Gut–Muscle Axis Mediated by Serum Lipopolysaccharide and Metabolites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1