1,2-Dithiolane/yne photopolymerizations to generate high refractive index polymers

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Chemistry Pub Date : 2025-02-03 DOI:10.1039/d4py01337a
Marianela Trujillo-Lemon, Benjamin D. Fairbanks, Andrew N. Sias, Robert R. McLeod, Christopher N. Bowman
{"title":"1,2-Dithiolane/yne photopolymerizations to generate high refractive index polymers","authors":"Marianela Trujillo-Lemon, Benjamin D. Fairbanks, Andrew N. Sias, Robert R. McLeod, Christopher N. Bowman","doi":"10.1039/d4py01337a","DOIUrl":null,"url":null,"abstract":"Copolymerization and conjugate addition of disulfides generally and dithiolanes particularly have been reported for various applications. Here, a new framework for preparing high refractive index polymeric materials through the photoinitiated addition of methyl ester of lipoic acid (LipOMe) or methyl 4-methyl-1,2-dithiolane-4-carboxylate (Me-AspOMe) with various alkynes is explored, and an infrared spectroscopy methodology was developed for understanding the dithiolane homopolymerization kinetics. The effects of the 1,2-dithiolane and alkyne chemical structures on reaction rates, polymer structures, and optical properties of the synthesized polymers were examined. Characterization of the photopolymerization products showed significant dependence on the specific structure of the 1,2-dithiolane and alkyne reactants. The ability of the 1,2-dithiolane/alkyne reaction to introduce a large amount of sulfide linkages resulted in differences in the polymer refractive index relative to that of the unreacted materials, reaching values up to 0.07. Furthermore, the application of these 1,2-dithiolane-alkyne systems into two-stage photopolymeric holography materials in a two-dimensional, high-refractive index structure was demonstrated.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"14 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4py01337a","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Copolymerization and conjugate addition of disulfides generally and dithiolanes particularly have been reported for various applications. Here, a new framework for preparing high refractive index polymeric materials through the photoinitiated addition of methyl ester of lipoic acid (LipOMe) or methyl 4-methyl-1,2-dithiolane-4-carboxylate (Me-AspOMe) with various alkynes is explored, and an infrared spectroscopy methodology was developed for understanding the dithiolane homopolymerization kinetics. The effects of the 1,2-dithiolane and alkyne chemical structures on reaction rates, polymer structures, and optical properties of the synthesized polymers were examined. Characterization of the photopolymerization products showed significant dependence on the specific structure of the 1,2-dithiolane and alkyne reactants. The ability of the 1,2-dithiolane/alkyne reaction to introduce a large amount of sulfide linkages resulted in differences in the polymer refractive index relative to that of the unreacted materials, reaching values up to 0.07. Furthermore, the application of these 1,2-dithiolane-alkyne systems into two-stage photopolymeric holography materials in a two-dimensional, high-refractive index structure was demonstrated.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
期刊最新文献
Triblock architecture and PEG hydrophilic blocks enable efficient thermogelation of poly(2-phenyl-2-oxazine)-based worm-gels BH3•SMe2 Addition Enables Molar Mass Control via Chain Stabilization in Phosphine-Borane Dehydropolymerization Revisiting AB2 + A-R copolymerization: Direct access to Janus and peripherally clickable hyperbranched polyesters Synthesis of novel D–π–A-based photosensitive alkoxyamine: application of two-photon polymerization via nitroxide-mediated photopolymerization Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1