A physically modelled selection function for compact binary mergers in the LIGO-Virgo O3 run and beyond

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Classical and Quantum Gravity Pub Date : 2025-01-29 DOI:10.1088/1361-6382/ad9c0e
Ana Lorenzo-Medina and Thomas Dent
{"title":"A physically modelled selection function for compact binary mergers in the LIGO-Virgo O3 run and beyond","authors":"Ana Lorenzo-Medina and Thomas Dent","doi":"10.1088/1361-6382/ad9c0e","DOIUrl":null,"url":null,"abstract":"Despite the observation of nearly 100 compact binary coalescence (CBC) events up to the end of the Advanced gravitational-wave (GW) detectors’ third observing run (O3), there remain fundamental open questions regarding their astrophysical formation mechanisms and environments. Population analysis should yield insights into these questions, but requires careful control of uncertainties and biases. GW observations have a strong selection bias: this is due first to the dependence of the signal amplitude on the source’s (intrinsic and extrinsic) parameters, and second to the complicated nature of detector noise and of current detection methods. In this work, we introduce a new physically-motivated model of the sensitivity of GW searches for CBC events, aimed at enhancing the accuracy and efficiency of population reconstructions. In contrast to current methods which rely on re-weighting simulated signals (injections) via importance sampling, we model the probability of detection of binary black hole (BBH) mergers as a smooth, analytic function of source masses, orbit-aligned spins, and distance, fitted to accurately match injection results. The estimate can thus be used for population models whose signal distribution over parameter space differs significantly from the injection distribution. Our method has already been used in population studies such as reconstructing the BBH merger rate dependence on redshift.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"56 3 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad9c0e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the observation of nearly 100 compact binary coalescence (CBC) events up to the end of the Advanced gravitational-wave (GW) detectors’ third observing run (O3), there remain fundamental open questions regarding their astrophysical formation mechanisms and environments. Population analysis should yield insights into these questions, but requires careful control of uncertainties and biases. GW observations have a strong selection bias: this is due first to the dependence of the signal amplitude on the source’s (intrinsic and extrinsic) parameters, and second to the complicated nature of detector noise and of current detection methods. In this work, we introduce a new physically-motivated model of the sensitivity of GW searches for CBC events, aimed at enhancing the accuracy and efficiency of population reconstructions. In contrast to current methods which rely on re-weighting simulated signals (injections) via importance sampling, we model the probability of detection of binary black hole (BBH) mergers as a smooth, analytic function of source masses, orbit-aligned spins, and distance, fitted to accurately match injection results. The estimate can thus be used for population models whose signal distribution over parameter space differs significantly from the injection distribution. Our method has already been used in population studies such as reconstructing the BBH merger rate dependence on redshift.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
期刊最新文献
Evidence for Planck luminosity bound in quantum gravity Theoretical analysis and simulation verification for measuring the geometric distances between the silicon spheres with the laser interferometer in G measurement For a flat Universe, C P /... Revisiting the dynamics of a charged spinning body in curved spacetime Clock synchronization and light-travel-time estimation for space-based gravitational-wave detectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1