Quantum data encoding as a distinct abstraction layer in the design of quantum circuits

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2025-01-28 DOI:10.1088/2058-9565/ada6f8
Gabriele Agliardi and Enrico Prati
{"title":"Quantum data encoding as a distinct abstraction layer in the design of quantum circuits","authors":"Gabriele Agliardi and Enrico Prati","doi":"10.1088/2058-9565/ada6f8","DOIUrl":null,"url":null,"abstract":"Complex quantum circuits are constituted by combinations of quantum subroutines. The computation is possible as long as the quantum data encoding is consistent throughout the circuit. Despite its fundamental importance, the formalization of quantum data encoding has never been addressed systematically so far. We formalize the concept of quantum data encoding, namely the format providing a representation of a data set through a quantum state, as a distinct abstract layer with respect to the associated data loading circuit. We survey existing encoding methods and their respective strategies for classical-to-quantum exact and approximate data loading, for the quantum-to-classical extraction of information from states, and for quantum-to-quantum encoding conversion. Next, we show how major quantum algorithms find a natural interpretation in terms of data loading. For instance, the quantum Fourier transform is described as a quantum encoding converter, while the quantum amplitude estimation as an extraction routine. The new conceptual framework is exemplified by considering its application to the simple case of the Bernstein–Vazirani algorithm, and then to quantum-based Monte Carlo simulations, thus showcasing the power of the proposed formalism for the description of complex quantum circuits. Indeed, the approach clarifies the structure of complex quantum circuits and enables their efficient design.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"20 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ada6f8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Complex quantum circuits are constituted by combinations of quantum subroutines. The computation is possible as long as the quantum data encoding is consistent throughout the circuit. Despite its fundamental importance, the formalization of quantum data encoding has never been addressed systematically so far. We formalize the concept of quantum data encoding, namely the format providing a representation of a data set through a quantum state, as a distinct abstract layer with respect to the associated data loading circuit. We survey existing encoding methods and their respective strategies for classical-to-quantum exact and approximate data loading, for the quantum-to-classical extraction of information from states, and for quantum-to-quantum encoding conversion. Next, we show how major quantum algorithms find a natural interpretation in terms of data loading. For instance, the quantum Fourier transform is described as a quantum encoding converter, while the quantum amplitude estimation as an extraction routine. The new conceptual framework is exemplified by considering its application to the simple case of the Bernstein–Vazirani algorithm, and then to quantum-based Monte Carlo simulations, thus showcasing the power of the proposed formalism for the description of complex quantum circuits. Indeed, the approach clarifies the structure of complex quantum circuits and enables their efficient design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Effective field theories in broadband quantum optics: modeling phase modulation and two-photon loss from cascaded quadratic nonlinearities Quantum-centric computation of molecular excited states with extended sample-based quantum diagonalization High-rate continuous-variable measurement device-independent quantum key distribution with finite-size security Non-iterative disentangled unitary coupled-cluster based on lie-algebraic structure A Gigahertz configurable silicon photonic integrated circuit nonlinear interferometer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1