An uncertainty quantification and accuracy enhancement method for deep regression prediction scenarios

IF 8.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanical Systems and Signal Processing Pub Date : 2025-01-27 DOI:10.1016/j.ymssp.2025.112394
Teng Zhang , Fangyu Peng , Rong Yan , Xiaowei Tang , Jiangmiao Yuan , Runpeng Deng
{"title":"An uncertainty quantification and accuracy enhancement method for deep regression prediction scenarios","authors":"Teng Zhang ,&nbsp;Fangyu Peng ,&nbsp;Rong Yan ,&nbsp;Xiaowei Tang ,&nbsp;Jiangmiao Yuan ,&nbsp;Runpeng Deng","doi":"10.1016/j.ymssp.2025.112394","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate regression prediction is a critical objective in industry; however, epistemic and aleatoric uncertainties can significantly impact prediction accuracy. Existing research primarily focuses on either prediction or uncertainty estimation, with limited studies addressing joint prediction methods and accuracy enhancement. This paper proposes an uncertainty quantification and accuracy enhancement method, referred to as <em>UQAE</em>, for deep regression prediction scenarios. This approach enables the simultaneous provision of both point predictions and uncertainty estimation results for any deep regression task. Furthermore, it facilitates a quadratic improvement in point prediction accuracy. Specifically, threshold monitoring and parameter-sharing asynchronous training strategies are implemented to ensure the joint prediction of point estimates and distribution-free intervals. Fuzzy rules are incorporated to enhance the accuracy of point predictions, providing interpretability based on the joint predictions. The proposed method is rigorously compared and evaluated using nine generalized manufacturing-related datasets, demonstrating significant improvements in both point prediction accuracy and uncertainty prediction interval estimation. Additionally, this approach is expected to advance regression prediction research in manufacturing, promoting higher accuracy and interpretability. The <em>UQAE</em> method and the associated datasets are available at <span><span><em>https://github.com/ZhangTeng-Hust/UQAE</em></span><svg><path></path></svg></span><strong><em>.</em></strong></div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"227 ","pages":"Article 112394"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025000950","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate regression prediction is a critical objective in industry; however, epistemic and aleatoric uncertainties can significantly impact prediction accuracy. Existing research primarily focuses on either prediction or uncertainty estimation, with limited studies addressing joint prediction methods and accuracy enhancement. This paper proposes an uncertainty quantification and accuracy enhancement method, referred to as UQAE, for deep regression prediction scenarios. This approach enables the simultaneous provision of both point predictions and uncertainty estimation results for any deep regression task. Furthermore, it facilitates a quadratic improvement in point prediction accuracy. Specifically, threshold monitoring and parameter-sharing asynchronous training strategies are implemented to ensure the joint prediction of point estimates and distribution-free intervals. Fuzzy rules are incorporated to enhance the accuracy of point predictions, providing interpretability based on the joint predictions. The proposed method is rigorously compared and evaluated using nine generalized manufacturing-related datasets, demonstrating significant improvements in both point prediction accuracy and uncertainty prediction interval estimation. Additionally, this approach is expected to advance regression prediction research in manufacturing, promoting higher accuracy and interpretability. The UQAE method and the associated datasets are available at https://github.com/ZhangTeng-Hust/UQAE.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种深度回归预测情景的不确定性量化及精度增强方法
准确的回归预测是工业中的一个关键目标;然而,认知和任意的不确定性会显著影响预测的准确性。现有的研究主要集中在预测或不确定性估计上,对联合预测方法和精度提高的研究很少。针对深度回归预测场景,提出了一种不确定性量化和精度增强方法UQAE。这种方法可以为任何深度回归任务同时提供点预测和不确定性估计结果。此外,它有助于点预测精度的二次提高。具体来说,实现了阈值监测和参数共享异步训练策略,以保证点估计和无分布区间的联合预测。结合模糊规则提高了点预测的准确性,提供了基于联合预测的可解释性。用9个广义制造相关数据集对该方法进行了严格的比较和评估,结果表明该方法在点预测精度和不确定性预测区间估计方面都有显著提高。此外,该方法有望推动制造业的回归预测研究,提高精度和可解释性。UQAE方法和相关的数据集可在https://github.com/ZhangTeng-Hust/UQAE上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
期刊最新文献
Editorial Board Corrigendum to “Quantitative study on far-field magnetic signal response of steel pipe girth welds with weak magnetic excitation”. [Mech. Syst. Signal Process. 240 (2025) 113404] Editorial Board Hierarchical Bayesian model updating using Dirichlet process mixtures for structural damage localization Inerter-enhanced piezoelectric energy harvesting for vehicle-induced bridge vibrations: Analytical modeling and optimal parameter design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1