PretoxTM: a text mining system for extracting treatment-related findings from preclinical toxicology reports

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2025-02-03 DOI:10.1186/s13321-024-00925-x
Javier Corvi, Nicolás Díaz-Roussel, José M. Fernández, Francesco Ronzano, Emilio Centeno, Pablo Accuosto, Celine Ibrahim, Shoji Asakura, Frank Bringezu, Mirjam Fröhlicher, Annika Kreuchwig, Yoko Nogami, Jeong Rih, Raul Rodriguez-Esteban, Nicolas Sajot, Joerg Wichard, Heng-Yi Michael Wu, Philip Drew, Thomas Steger-Hartmann, Alfonso Valencia, Laura I. Furlong, Salvador Capella-Gutierrez
{"title":"PretoxTM: a text mining system for extracting treatment-related findings from preclinical toxicology reports","authors":"Javier Corvi,&nbsp;Nicolás Díaz-Roussel,&nbsp;José M. Fernández,&nbsp;Francesco Ronzano,&nbsp;Emilio Centeno,&nbsp;Pablo Accuosto,&nbsp;Celine Ibrahim,&nbsp;Shoji Asakura,&nbsp;Frank Bringezu,&nbsp;Mirjam Fröhlicher,&nbsp;Annika Kreuchwig,&nbsp;Yoko Nogami,&nbsp;Jeong Rih,&nbsp;Raul Rodriguez-Esteban,&nbsp;Nicolas Sajot,&nbsp;Joerg Wichard,&nbsp;Heng-Yi Michael Wu,&nbsp;Philip Drew,&nbsp;Thomas Steger-Hartmann,&nbsp;Alfonso Valencia,&nbsp;Laura I. Furlong,&nbsp;Salvador Capella-Gutierrez","doi":"10.1186/s13321-024-00925-x","DOIUrl":null,"url":null,"abstract":"<div><p>Over the last few decades the pharmaceutical industry has generated a vast corpus of knowledge on the safety and efficacy of drugs. Much of this information is contained in toxicology reports, which summarise the results of animal studies designed to analyse the effects of the tested compound, including unintended pharmacological and toxic effects, known as treatment-related findings. Despite the potential of this knowledge, the fact that most of this relevant information is only available as unstructured text with variable degrees of digitisation has hampered its systematic access, use and exploitation. Text mining technologies have the ability to automatically extract, analyse and aggregate such information, providing valuable new insights into the drug discovery and development process. In the context of the eTRANSAFE project, we present PretoxTM (Preclinical Toxicology Text Mining), the first system specifically designed to detect, extract, organise and visualise treatment-related findings from toxicology reports. The PretoxTM tool comprises three main components: PretoxTM Corpus, PretoxTM Pipeline and PretoxTM Web App. The PretoxTM Corpus is a gold standard corpus of preclinical treatment-related findings annotated by toxicology experts. This corpus was used to develop, train and validate the PretoxTM Pipeline, which extracts treatment-related findings from preclinical study reports. The extracted information is then presented for expert visualisation and validation in the PretoxTM Web App.</p><p><b>Scientific Contribution</b></p><p>While text mining solutions have been widely used in the clinical domain to identify adverse drug reactions from various sources, no similar systems exist for identifying adverse events in animal models during preclinical testing. PretoxTM fills this gap by efficiently extracting treatment-related findings from preclinical toxicology reports. This provides a valuable resource for toxicology research, enhancing the efficiency of safety evaluations, saving time, and leading to more effective decision-making in the drug development process.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00925-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00925-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last few decades the pharmaceutical industry has generated a vast corpus of knowledge on the safety and efficacy of drugs. Much of this information is contained in toxicology reports, which summarise the results of animal studies designed to analyse the effects of the tested compound, including unintended pharmacological and toxic effects, known as treatment-related findings. Despite the potential of this knowledge, the fact that most of this relevant information is only available as unstructured text with variable degrees of digitisation has hampered its systematic access, use and exploitation. Text mining technologies have the ability to automatically extract, analyse and aggregate such information, providing valuable new insights into the drug discovery and development process. In the context of the eTRANSAFE project, we present PretoxTM (Preclinical Toxicology Text Mining), the first system specifically designed to detect, extract, organise and visualise treatment-related findings from toxicology reports. The PretoxTM tool comprises three main components: PretoxTM Corpus, PretoxTM Pipeline and PretoxTM Web App. The PretoxTM Corpus is a gold standard corpus of preclinical treatment-related findings annotated by toxicology experts. This corpus was used to develop, train and validate the PretoxTM Pipeline, which extracts treatment-related findings from preclinical study reports. The extracted information is then presented for expert visualisation and validation in the PretoxTM Web App.

Scientific Contribution

While text mining solutions have been widely used in the clinical domain to identify adverse drug reactions from various sources, no similar systems exist for identifying adverse events in animal models during preclinical testing. PretoxTM fills this gap by efficiently extracting treatment-related findings from preclinical toxicology reports. This provides a valuable resource for toxicology research, enhancing the efficiency of safety evaluations, saving time, and leading to more effective decision-making in the drug development process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
Barlow Twins deep neural network for advanced 1D drug–target interaction prediction Positional embeddings and zero-shot learning using BERT for molecular-property prediction Improving drug repositioning with negative data labeling using large language models PretoxTM: a text mining system for extracting treatment-related findings from preclinical toxicology reports MLinvitroTox reloaded for high-throughput hazard-based prioritization of high-resolution mass spectrometry data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1