Production, Transport, and Destruction of Dust in the Kuiper Belt: The Effects of Refractory and Volatile Grain Compositions

Thomas Corbett, Alex Doner, Mihály Horányi, Pontus Brandt, Will Grundy, Carey M. Lisse, Joel Parker, Lowell Peltier, Andrew R. Poppe, Kelsi N. Singer, S. Alan Stern and Anne J. Verbiscer
{"title":"Production, Transport, and Destruction of Dust in the Kuiper Belt: The Effects of Refractory and Volatile Grain Compositions","authors":"Thomas Corbett, Alex Doner, Mihály Horányi, Pontus Brandt, Will Grundy, Carey M. Lisse, Joel Parker, Lowell Peltier, Andrew R. Poppe, Kelsi N. Singer, S. Alan Stern and Anne J. Verbiscer","doi":"10.3847/2041-8213/adab75","DOIUrl":null,"url":null,"abstract":"The Venetia Burney Student Dust Counter (SDC) on board the New Horizons spacecraft measures the spatial and size distributions of dust along its trajectory. Models based on early SDC measurements predicted a peak dust number density at a heliocentric distance of ∼40 au, followed by a rapid decline. Instead, SDC observed dust fluxes 2–3 times higher than predicted between 40 and 60 au. One potential explanation for this discrepancy is that SDC may be encountering icy grains with different dynamical behavior than previously modeled silicate grains. Due to ultraviolet photosputtering, water–ice grains rapidly erode and migrate outward, significantly contributing to the measured dust number densities only at distances ≳40 au. We present a model of silicate and ice grain dynamics in the outer solar system, considering gravitational and radiation forces and grain erosion. Using SDC data, we estimate that the mass production rate of ice grains between 0.1 and 10 μm in the Kuiper Belt (KB) would need to be 20–70 times higher than that of silicate grains. However, KB grains are expected to be refractory/volatile mixtures rather than pure silicate or ice. Thus, we briefly explore simple models of more realistic mixed-grain cases to further gauge the effects of grain composition on the equilibrium dust distribution. Future SDC measurements at greater distances will test the model predictions and further constrain silicate and ice grain production rates in the KB.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adab75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Venetia Burney Student Dust Counter (SDC) on board the New Horizons spacecraft measures the spatial and size distributions of dust along its trajectory. Models based on early SDC measurements predicted a peak dust number density at a heliocentric distance of ∼40 au, followed by a rapid decline. Instead, SDC observed dust fluxes 2–3 times higher than predicted between 40 and 60 au. One potential explanation for this discrepancy is that SDC may be encountering icy grains with different dynamical behavior than previously modeled silicate grains. Due to ultraviolet photosputtering, water–ice grains rapidly erode and migrate outward, significantly contributing to the measured dust number densities only at distances ≳40 au. We present a model of silicate and ice grain dynamics in the outer solar system, considering gravitational and radiation forces and grain erosion. Using SDC data, we estimate that the mass production rate of ice grains between 0.1 and 10 μm in the Kuiper Belt (KB) would need to be 20–70 times higher than that of silicate grains. However, KB grains are expected to be refractory/volatile mixtures rather than pure silicate or ice. Thus, we briefly explore simple models of more realistic mixed-grain cases to further gauge the effects of grain composition on the equilibrium dust distribution. Future SDC measurements at greater distances will test the model predictions and further constrain silicate and ice grain production rates in the KB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The JWST Weather Report from the Isolated Exoplanet Analog SIMP 0136+0933: Pressure-dependent Variability Driven by Multiple Mechanisms Near- and Mid-ultraviolet Observations of X-6.3 Flare on 2024 February 22 Recorded by the Solar Ultraviolet Imaging Telescope on board Aditya-L1 Fading Light, Fierce Winds: JWST Snapshot of a Sub-Eddington Quasar at Cosmic Dawn Episodic X-Ray Outflows from the Tidal Disruption Event ASASSN-14li High-frequency Power Spectrum of Active Galactic Nucleus NGC 4051 Revealed by NICER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1