{"title":"A data-driven method for the deformation analysis of layered rocks","authors":"Fanding Feng, Diansen Yang, Qinghui Jiang","doi":"10.1016/j.ijrmms.2025.106030","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a data-driven method for the deformation analysis of layered rocks, which consists of generating a stress–strain database and using a data-driven computational solution. The method does not require defining the material's constitutive relationship to conduct analysis of layered rock deformation under loading of the same material. First, the data-driven identification (DDI) algorithm infers and builds a stress‒strain database of the material based on the strain field and loading force. Then, this database is used to calculate the response of the same material structure with arbitrary geometry and boundary conditions using data-driven computational mechanics (DDCM). The specific workflow of the method is demonstrated, and the computational accuracy and reliability are verified through an experimental application example. The method naturally combines the DDI algorithm and the DDCM solver, providing a new concept for analysing the deformation of layered rocks. Through this method, it is possible to conduct more accurate deformation analysis of layered rocks without defining their constitutive relationships. This has significant engineering application value in the design of excavations for layered rock slopes, foundations, and underground caverns.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"186 ","pages":"Article 106030"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925000073","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a data-driven method for the deformation analysis of layered rocks, which consists of generating a stress–strain database and using a data-driven computational solution. The method does not require defining the material's constitutive relationship to conduct analysis of layered rock deformation under loading of the same material. First, the data-driven identification (DDI) algorithm infers and builds a stress‒strain database of the material based on the strain field and loading force. Then, this database is used to calculate the response of the same material structure with arbitrary geometry and boundary conditions using data-driven computational mechanics (DDCM). The specific workflow of the method is demonstrated, and the computational accuracy and reliability are verified through an experimental application example. The method naturally combines the DDI algorithm and the DDCM solver, providing a new concept for analysing the deformation of layered rocks. Through this method, it is possible to conduct more accurate deformation analysis of layered rocks without defining their constitutive relationships. This has significant engineering application value in the design of excavations for layered rock slopes, foundations, and underground caverns.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.