Janus dendritic ionizable lipids with fine designed headgroup and tails to improve mRNA delivery efficiency

IF 3.3 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic & Medicinal Chemistry Pub Date : 2025-01-28 DOI:10.1016/j.bmc.2025.118080
Chao Liu, Yuhao Jiang, Wenliang Xue, Jinyu Liu, Zihao Wang, Xinsong Li
{"title":"Janus dendritic ionizable lipids with fine designed headgroup and tails to improve mRNA delivery efficiency","authors":"Chao Liu,&nbsp;Yuhao Jiang,&nbsp;Wenliang Xue,&nbsp;Jinyu Liu,&nbsp;Zihao Wang,&nbsp;Xinsong Li","doi":"10.1016/j.bmc.2025.118080","DOIUrl":null,"url":null,"abstract":"<div><div>Lipid nanoparticles (LNP) are recognized as the most efficient non-viral carriers for the delivery of nucleic acids including small interfering RNA (siRNA) and messenger RNA (mRNA). Ionizable lipid within the system is pivotal component influencing encapsulation, endosomal escape, delivery efficiency and immunogenicity. Accordingly, the precision design of ionizable lipids is a key step in the development of LNP. In this report, we constructed sixteen Janus dendritic ionizable lipids by varying numbers and alkyl chain length of tails based on different ionizable head containing hydroxyl and tertiary amine groups. The corresponding LNP were prepared by using microfluidic mixing device, with all samples exhibiting particle size around 100 nm and polydispersity index (PDI) below 0.2. <em>In vivo</em> validation demonstrates that two optimized ionizable lipids containing two hydroxy groups, two tertiary amines and six hydrophobic chain tails (U-502, U-503) show superior delivery efficiency compared to lipids with less tails and commercial ALC-0315. Hematoxylin and Eosin (H&amp;E) staining of tissues, immunogenicity, liver and kidney function tests additionally confirm that both ionizable lipids have favorable biocompatibility and low <em>in vivo</em> toxicity. Lysosomal escape and cell transfection data verify the <em>in vitro</em> delivery efficacy of these LNP. Taken together, Janus dendritic lipids with fine designed ionizable head and multiple hydrophobic tails have improved mRNA delivery efficiency and biosafety, which may be promise in the development of delivery system.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"120 ","pages":"Article 118080"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089625000215","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid nanoparticles (LNP) are recognized as the most efficient non-viral carriers for the delivery of nucleic acids including small interfering RNA (siRNA) and messenger RNA (mRNA). Ionizable lipid within the system is pivotal component influencing encapsulation, endosomal escape, delivery efficiency and immunogenicity. Accordingly, the precision design of ionizable lipids is a key step in the development of LNP. In this report, we constructed sixteen Janus dendritic ionizable lipids by varying numbers and alkyl chain length of tails based on different ionizable head containing hydroxyl and tertiary amine groups. The corresponding LNP were prepared by using microfluidic mixing device, with all samples exhibiting particle size around 100 nm and polydispersity index (PDI) below 0.2. In vivo validation demonstrates that two optimized ionizable lipids containing two hydroxy groups, two tertiary amines and six hydrophobic chain tails (U-502, U-503) show superior delivery efficiency compared to lipids with less tails and commercial ALC-0315. Hematoxylin and Eosin (H&E) staining of tissues, immunogenicity, liver and kidney function tests additionally confirm that both ionizable lipids have favorable biocompatibility and low in vivo toxicity. Lysosomal escape and cell transfection data verify the in vitro delivery efficacy of these LNP. Taken together, Janus dendritic lipids with fine designed ionizable head and multiple hydrophobic tails have improved mRNA delivery efficiency and biosafety, which may be promise in the development of delivery system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioorganic & Medicinal Chemistry
Bioorganic & Medicinal Chemistry 医学-生化与分子生物学
CiteScore
6.80
自引率
2.90%
发文量
413
审稿时长
17 days
期刊介绍: Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides. The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.
期刊最新文献
Editorial Board Contents continued Graphical abstract TOC Graphical abstract TOC Structure-activity relationship studies and pharmacological evaluation of 4-phenylthiazoles as dual soluble epoxide hydrolase/fatty acid amide hydrolase inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1