{"title":"Integrated bacterial cell lysis and DNA extraction using paper-based isotachophoresis†","authors":"Shruti Soni and Bhushan J. Toley","doi":"10.1039/D3LC00604B","DOIUrl":null,"url":null,"abstract":"<p >Bacterial infections remain a global threat, particularly in low-resource settings, where access to accurate and timely diagnosis is limited. Point-of-care nucleic acid amplification tests have shown great promise in addressing this challenge. However, their dependence on complex traditional sample preparation methods remains a major challenge. To address this limitation, we present a paper-based sample preparation device that integrates bacterial cell lysis, DNA purification, and concentration using an electrokinetic technique called isotachophoresis (ITP). This is the first device that (i) integrates electrochemical bacterial lysis with ITP and (ii) demonstrates the focusing of whole bacterial genomic DNA (gDNA) in paper. Characterization with buffers showed that the paper-based ITP sample preparation module (p-ITPrep) concentrated bacterial gDNA with an average concentration factor of 12×, and DNA could be extracted from a sample containing as few as 10<small><sup>2</sup></small> CFU mL<small><sup>−1</sup></small><em>Mycobacterium smegmatis</em> (<em>Msm</em>). From complex biological matrices – human saliva, human blood serum, and artificial urine – p-ITPrep extracted DNA from samples containing 10<small><sup>2</sup></small> CFU <em>Msm</em> per mL saliva or artificial urine and 10<small><sup>3</sup></small> CFU <em>Msm</em> per mL serum within 20 min. The extraction procedure involved only 3 user steps, in contrast to conventional solid phase extraction kits that require more than 10 user steps. p-ITPrep may provide a simple, inexpensive, and versatile alternative to conventional multi-step nucleic acid extraction protocols for point-of-care diagnostics.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 4","pages":" 686-697"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d3lc00604b","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial infections remain a global threat, particularly in low-resource settings, where access to accurate and timely diagnosis is limited. Point-of-care nucleic acid amplification tests have shown great promise in addressing this challenge. However, their dependence on complex traditional sample preparation methods remains a major challenge. To address this limitation, we present a paper-based sample preparation device that integrates bacterial cell lysis, DNA purification, and concentration using an electrokinetic technique called isotachophoresis (ITP). This is the first device that (i) integrates electrochemical bacterial lysis with ITP and (ii) demonstrates the focusing of whole bacterial genomic DNA (gDNA) in paper. Characterization with buffers showed that the paper-based ITP sample preparation module (p-ITPrep) concentrated bacterial gDNA with an average concentration factor of 12×, and DNA could be extracted from a sample containing as few as 102 CFU mL−1Mycobacterium smegmatis (Msm). From complex biological matrices – human saliva, human blood serum, and artificial urine – p-ITPrep extracted DNA from samples containing 102 CFU Msm per mL saliva or artificial urine and 103 CFU Msm per mL serum within 20 min. The extraction procedure involved only 3 user steps, in contrast to conventional solid phase extraction kits that require more than 10 user steps. p-ITPrep may provide a simple, inexpensive, and versatile alternative to conventional multi-step nucleic acid extraction protocols for point-of-care diagnostics.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.