Involvement of Piezo 1 in inhibition of shear-induced platelet activation and arterial thrombosis by ginsenoside Rb1.

IF 6.8 2区 医学 Q1 PHARMACOLOGY & PHARMACY British Journal of Pharmacology Pub Date : 2025-02-02 DOI:10.1111/bph.17434
Yilin Wang, Lu Liu, Jia Li, Yue You, Shunli Xiao, Jiantao Feng, Xiaojie Yin, Fulong Liao, Yun You
{"title":"Involvement of Piezo 1 in inhibition of shear-induced platelet activation and arterial thrombosis by ginsenoside Rb1.","authors":"Yilin Wang, Lu Liu, Jia Li, Yue You, Shunli Xiao, Jiantao Feng, Xiaojie Yin, Fulong Liao, Yun You","doi":"10.1111/bph.17434","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Shear-induced platelet activation and aggregation (SIPA) play crucial roles in arterial thrombosis. Piezo1 is a mechanosensitive calcium channel that promotes platelet hyperactivation under pathological high-shear conditions. This study explores the function of platelet Piezo1 in SIPA and arterial thrombosis, and the inhibitory effects and mechanisms of ginsenoside Rb1 on these processes.</p><p><strong>Experimental approach: </strong>Transgenic mice with platelet-specific Piezo1 deficiency (Piezo1<sup>ΔPlt</sup>) were used to elucidate the role of platelet Piezo1 in SIPA and arterial thrombosis. A microfluidic channel system was employed to assess platelet aggregation, calcium influx, calpain activity, talin cleavage, integrin αIIbβ3 activation and P-selectin expression under shear flow. Cellular thermal shift assay was used to determine binding between Rb1 and Piezo1. Folts-like model in mice was used to evaluate antithrombotic effects of Rb1.</p><p><strong>Key results: </strong>Piezo1 deficiency in platelets reduced platelet activation and aggregation induced by a high shear rate of 4000 s<sup>-1</sup> and attenuated arterial thrombosis induced by Folts-like mouse model. Rb1 inhibited SIPA with an IC<sub>50</sub> of 10.8 μM. Rb1 inhibited shear-induced Ca<sup>2+</sup>-dependent platelet activation and aggregation, as well as thrombus formation in Folts-like model in Piezo1<sup>fl/fl</sup> mice. Rb1 significantly improved thermal stability of Piezo1 in platelets by binding to Piezo1. Treatment of Piezo1<sup>ΔPlt</sup> mice with Rb1 did not exhibit further inhibitory effects on SIPA and thrombosis.</p><p><strong>Conclusion and implications: </strong>Platelet Piezo1 is essential for SIPA and arterial thrombosis induced by high shear. Rb1 exerted anti-platelet and anti-thrombotic effects at high shear rates via Piezo1 channels, providing a potential candidate as antiplatelet therapeutic agent.</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.17434","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Shear-induced platelet activation and aggregation (SIPA) play crucial roles in arterial thrombosis. Piezo1 is a mechanosensitive calcium channel that promotes platelet hyperactivation under pathological high-shear conditions. This study explores the function of platelet Piezo1 in SIPA and arterial thrombosis, and the inhibitory effects and mechanisms of ginsenoside Rb1 on these processes.

Experimental approach: Transgenic mice with platelet-specific Piezo1 deficiency (Piezo1ΔPlt) were used to elucidate the role of platelet Piezo1 in SIPA and arterial thrombosis. A microfluidic channel system was employed to assess platelet aggregation, calcium influx, calpain activity, talin cleavage, integrin αIIbβ3 activation and P-selectin expression under shear flow. Cellular thermal shift assay was used to determine binding between Rb1 and Piezo1. Folts-like model in mice was used to evaluate antithrombotic effects of Rb1.

Key results: Piezo1 deficiency in platelets reduced platelet activation and aggregation induced by a high shear rate of 4000 s-1 and attenuated arterial thrombosis induced by Folts-like mouse model. Rb1 inhibited SIPA with an IC50 of 10.8 μM. Rb1 inhibited shear-induced Ca2+-dependent platelet activation and aggregation, as well as thrombus formation in Folts-like model in Piezo1fl/fl mice. Rb1 significantly improved thermal stability of Piezo1 in platelets by binding to Piezo1. Treatment of Piezo1ΔPlt mice with Rb1 did not exhibit further inhibitory effects on SIPA and thrombosis.

Conclusion and implications: Platelet Piezo1 is essential for SIPA and arterial thrombosis induced by high shear. Rb1 exerted anti-platelet and anti-thrombotic effects at high shear rates via Piezo1 channels, providing a potential candidate as antiplatelet therapeutic agent.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.40
自引率
12.30%
发文量
270
审稿时长
2.0 months
期刊介绍: The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries. Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues. In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.
期刊最新文献
Clemastine attenuates subarachnoid haemorrhage pathology in a mouse model via Nrf2/SQSTM1-mediated autophagy. Issue Information An antisense oligonucleotide targeting the heat-shock protein HSPB5 as an innovative therapeutic approach in pulmonary fibrosis. 2-Hydroxyl hispolon reverses high glucose-induced endothelial progenitor cell dysfunction through the PI3K/Akt/eNOS and AMPK/HO-1 pathways. 7 I, a structurally modified sinomenine, exerts dual anti-GBM effects by inhibiting glioblastoma proliferation and inducing necroptosis which further mediates lysosomal cell death.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1