Investigating the Relationship Between Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors and Blood Pressure.

IF 2 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiology in Review Pub Date : 2025-02-03 DOI:10.1097/CRD.0000000000000861
Mohammed Kallash, William Frishman
{"title":"Investigating the Relationship Between Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors and Blood Pressure.","authors":"Mohammed Kallash, William Frishman","doi":"10.1097/CRD.0000000000000861","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium-glucose cotransporter-2 (SGLT2) inhibitors were originally approved for use in type 2 diabetes, but in recent years, these medications were found to also have significant cardiovascular benefits in patients with heart failure with reduced and preserved ejection fraction and chronic kidney disease. Part of the cardiovascular benefits of SGLT2 inhibitors likely comes from their antihypertensive effect in addition to other unknown effects, but the mechanism by which these medications reduce blood pressure has not been identified yet. Multiple mechanisms have been proposed to describe SGLT2 inhibitors' antihypertensive effect, including their associated weight loss and diuretic effect. However, studies have shown that these indirect mechanisms alone do not account for the antihypertensive effect seen with this medication, with more recent studies identifying a new potential mechanism by which SGLT2 inhibitors may derive their direct antihypertensive and cardiovascular benefits. In animal models, SGLT2 receptors were identified in parts of the brain responsible for regulating the sympathetic nervous system and adjusting blood pressure. In these studies, SGLT2 inhibitors suppressed the neuronal activity in these brain regions, reducing the sympathetic nervous system activity and blood pressure of the animals. Further investigation is needed to identify whether there are SGLT2 receptors in the central nervous system of humans and whether SGLT2 inhibitors can suppress neuronal activity in these brain regions. This information could be significant in learning more about the susceptibility and severity of primary hypertension in certain patient populations, as well as identifying whether SGLT2 inhibitors can be considered as a primary antihypertensive agent.</p>","PeriodicalId":9549,"journal":{"name":"Cardiology in Review","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiology in Review","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CRD.0000000000000861","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-glucose cotransporter-2 (SGLT2) inhibitors were originally approved for use in type 2 diabetes, but in recent years, these medications were found to also have significant cardiovascular benefits in patients with heart failure with reduced and preserved ejection fraction and chronic kidney disease. Part of the cardiovascular benefits of SGLT2 inhibitors likely comes from their antihypertensive effect in addition to other unknown effects, but the mechanism by which these medications reduce blood pressure has not been identified yet. Multiple mechanisms have been proposed to describe SGLT2 inhibitors' antihypertensive effect, including their associated weight loss and diuretic effect. However, studies have shown that these indirect mechanisms alone do not account for the antihypertensive effect seen with this medication, with more recent studies identifying a new potential mechanism by which SGLT2 inhibitors may derive their direct antihypertensive and cardiovascular benefits. In animal models, SGLT2 receptors were identified in parts of the brain responsible for regulating the sympathetic nervous system and adjusting blood pressure. In these studies, SGLT2 inhibitors suppressed the neuronal activity in these brain regions, reducing the sympathetic nervous system activity and blood pressure of the animals. Further investigation is needed to identify whether there are SGLT2 receptors in the central nervous system of humans and whether SGLT2 inhibitors can suppress neuronal activity in these brain regions. This information could be significant in learning more about the susceptibility and severity of primary hypertension in certain patient populations, as well as identifying whether SGLT2 inhibitors can be considered as a primary antihypertensive agent.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiology in Review
Cardiology in Review CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
4.60
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The mission of Cardiology in Review is to publish reviews on topics of current interest in cardiology that will foster increased understanding of the pathogenesis, diagnosis, clinical course, prevention, and treatment of cardiovascular disorders. Articles of the highest quality are written by authorities in the field and published promptly in a readable format with visual appeal
期刊最新文献
Long Saphenous Vein Harvesting: Reviewing Various Techniques. Review of the Etiology, Diagnosis, and Therapy of Left Atrial Thrombus. New Therapy Update Aprocitentan: An Endothelin Receptor Antagonist for the Treatment of Drug-Resistant Systemic Hypertension. Mitral Annular Disjunction: A Scoping Review. Safety and Efficacy of Nondihydropyridine Calcium Channel Blockers for Acute Rate Control in Atrial Fibrillation with Rapid Ventricular Response and Comorbid Heart Failure with Reduced Ejection Fraction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1