Vertical two-phase flow regimes in an annulus image dataset - Texas A&M university.

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2025-01-04 eCollection Date: 2025-02-01 DOI:10.1016/j.dib.2024.111245
Kaushik Manikonda, Chinemerem Obi, Aarya Abhay Brahmane, Mohammad Azizur Rahman, Abu Rashid Hasan
{"title":"Vertical two-phase flow regimes in an annulus image dataset - Texas A&M university.","authors":"Kaushik Manikonda, Chinemerem Obi, Aarya Abhay Brahmane, Mohammad Azizur Rahman, Abu Rashid Hasan","doi":"10.1016/j.dib.2024.111245","DOIUrl":null,"url":null,"abstract":"<p><p>The Vertical Two-Phase Flow Regimes in an annulus Image Dataset, generated at Texas A&M University, presents an extensive collection of high-resolution images capturing various gas-liquid two-phase flow dynamics within a vertical flow setup. This dataset results from meticulous experimental work in the 140 ft Tower Lab, utilizing a combination of water and air flows to simulate real-world conditions and employing high-quality video recordings to document flow regime transitions. Designed to support research in fluid dynamics, machine vision, and computational modeling, the dataset offers valuable resources for developing machine vision models for accurate regime detection and differentiation, enhancing the fidelity of computational fluid dynamics simulations, and facilitating the estimation of critical flow parameters. Despite its comprehensive nature, the dataset notes limitations such as the absence of annular flow regime images and its exclusive focus on vertical flow conditions.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"58 ","pages":"111245"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786701/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Vertical Two-Phase Flow Regimes in an annulus Image Dataset, generated at Texas A&M University, presents an extensive collection of high-resolution images capturing various gas-liquid two-phase flow dynamics within a vertical flow setup. This dataset results from meticulous experimental work in the 140 ft Tower Lab, utilizing a combination of water and air flows to simulate real-world conditions and employing high-quality video recordings to document flow regime transitions. Designed to support research in fluid dynamics, machine vision, and computational modeling, the dataset offers valuable resources for developing machine vision models for accurate regime detection and differentiation, enhancing the fidelity of computational fluid dynamics simulations, and facilitating the estimation of critical flow parameters. Despite its comprehensive nature, the dataset notes limitations such as the absence of annular flow regime images and its exclusive focus on vertical flow conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
A global gross primary productivity of sunlit and shaded canopies dataset from 2002 to 2020 via embedding random forest into two-leaf light use efficiency model. Dataset of keywords used by European political parties on Facebook. IDDMSLD: An image dataset for detecting Malabar spinach leaf diseases. The media framing dataset: Analyzing news narratives in Mexico and Colombia. Transcriptome datasets of salt-stressed tomato plants treated with zinc oxide nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1