{"title":"ONUBAD: A comprehensive dataset for automated conversion of Bangla regional dialects into standard Bengali dialect","authors":"Nusrat Sultana , Rumana Yasmin , Bijon Mallik , Mohammad Shorif Uddin","doi":"10.1016/j.dib.2025.111276","DOIUrl":null,"url":null,"abstract":"<div><div>Despite significant research on the Bangla language in Natural Language Processing (NLP), there remains a notable resource deficit for its diverse regional dialects, such as those spoken in Chittagong, Sylhet, and Barisal. These dialects, often considered unintelligible to speakers of Standard Bengali, pose challenges due to their unique grammatical structures and phonetic variations. Some linguists categorize them as distinct languages. To address this, we present ONUBAD, a large and freely available dataset for the automatic translation of Chittagong, Sylhet, and Barisal dialects into Standard Bangla using a Neural Machine Translation (NMT) system. ONUBAD provides a parallel corpus of 1540 words, 130 clauses, and 980 sentences per regional dialect and their standard counterparts along with English translation. The dataset includes metadata on phonetic variations and grammatical features, aiming to bridge the gap between standard and non-standard forms of Bangla. It serves as a valuable resource for researchers in NLP, dialect studies, and linguistic preservation, helping to develop more accurate and contextually relevant translation models. The dataset was collected between July and September 2024 from diverse sources such as books, websites, and regional people with the help of regional dialect specialists. It is hosted by the Department of Computer Science and Engineering, Jahangirnagar University, and is freely accessible at <span><span>https://data.mendeley.com/datasets/6ft99kf89b/2</span><svg><path></path></svg></span></div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"58 ","pages":"Article 111276"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite significant research on the Bangla language in Natural Language Processing (NLP), there remains a notable resource deficit for its diverse regional dialects, such as those spoken in Chittagong, Sylhet, and Barisal. These dialects, often considered unintelligible to speakers of Standard Bengali, pose challenges due to their unique grammatical structures and phonetic variations. Some linguists categorize them as distinct languages. To address this, we present ONUBAD, a large and freely available dataset for the automatic translation of Chittagong, Sylhet, and Barisal dialects into Standard Bangla using a Neural Machine Translation (NMT) system. ONUBAD provides a parallel corpus of 1540 words, 130 clauses, and 980 sentences per regional dialect and their standard counterparts along with English translation. The dataset includes metadata on phonetic variations and grammatical features, aiming to bridge the gap between standard and non-standard forms of Bangla. It serves as a valuable resource for researchers in NLP, dialect studies, and linguistic preservation, helping to develop more accurate and contextually relevant translation models. The dataset was collected between July and September 2024 from diverse sources such as books, websites, and regional people with the help of regional dialect specialists. It is hosted by the Department of Computer Science and Engineering, Jahangirnagar University, and is freely accessible at https://data.mendeley.com/datasets/6ft99kf89b/2
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.