Vdr mediates Wnt signaling pathway to regulate odontoblasts differentiation during dentin apposition.

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY European journal of pharmacology Pub Date : 2025-01-31 DOI:10.1016/j.ejphar.2025.177333
Yinlin Wu, Wenyan Zhu, Liang Wang, Weihao Zhang, Kai Zhang, Meiqun Sun, Junchang Guan, Shanshan Liu, Yudong Liu
{"title":"Vdr mediates Wnt signaling pathway to regulate odontoblasts differentiation during dentin apposition.","authors":"Yinlin Wu, Wenyan Zhu, Liang Wang, Weihao Zhang, Kai Zhang, Meiqun Sun, Junchang Guan, Shanshan Liu, Yudong Liu","doi":"10.1016/j.ejphar.2025.177333","DOIUrl":null,"url":null,"abstract":"<p><p>Dentin, a complex, living, and porous mineral substance, is produced by the mineralization of predentin, which is secreted by odontoblasts. This substance is crucial for maintaining the health of teeth. However, the specific function of the vitamin D receptor (Vdr) in the mineralization of odontoblasts, dentin homeostasis, and its interaction with Wnt signaling pathway during dentin apposition is not well understood. In this study, we employed Vdr transgenic knockout mice to study the dental effects and observed enlarged pulp cavities, diminished dentin, and increased predentin thickness in Vdr<sup>-/-</sup> mice. We further reduced Vdr expression in odontoblasts and analyzed the changes in mineralization and Wnt signaling pathway. Our results showed decreased levels of mineralization and its markers Dspp, Alpl, Opn, Col-1, and Bsp in Vdr-knockdown odontoblasts. Additionally, the Wnt signaling pathway was downregulated, as indicated by lower levels of β-catenin, Lef1, and Axin2, and higher levels of Dkk1. We then attempted to rescue these effects by treating them with lithium chloride (LiCl) which activated the Wnt signaling pathway and appeared to restore the mineralization capacity of odontoblasts. Overall, our findings suggest that Vdr can mediate the Wnt signaling pathway to regulate odontoblasts differentiation during dentin apposition, presenting new potential approaches for improving dental health.</p>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":" ","pages":"177333"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejphar.2025.177333","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Dentin, a complex, living, and porous mineral substance, is produced by the mineralization of predentin, which is secreted by odontoblasts. This substance is crucial for maintaining the health of teeth. However, the specific function of the vitamin D receptor (Vdr) in the mineralization of odontoblasts, dentin homeostasis, and its interaction with Wnt signaling pathway during dentin apposition is not well understood. In this study, we employed Vdr transgenic knockout mice to study the dental effects and observed enlarged pulp cavities, diminished dentin, and increased predentin thickness in Vdr-/- mice. We further reduced Vdr expression in odontoblasts and analyzed the changes in mineralization and Wnt signaling pathway. Our results showed decreased levels of mineralization and its markers Dspp, Alpl, Opn, Col-1, and Bsp in Vdr-knockdown odontoblasts. Additionally, the Wnt signaling pathway was downregulated, as indicated by lower levels of β-catenin, Lef1, and Axin2, and higher levels of Dkk1. We then attempted to rescue these effects by treating them with lithium chloride (LiCl) which activated the Wnt signaling pathway and appeared to restore the mineralization capacity of odontoblasts. Overall, our findings suggest that Vdr can mediate the Wnt signaling pathway to regulate odontoblasts differentiation during dentin apposition, presenting new potential approaches for improving dental health.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
期刊最新文献
Targeting Ubiquitin-Proteasome system (UPS) in treating osteoarthritis. Basigin in cerebrovascular diseases: Roles, mechanisms, and therapeutic target potential. FADS1 inhibition protects retinal pigment epithelium cells from ferroptosis in age related macular degeneration. The combination of RL-QN15 and OH-CATH30 promotes the repair of acne via the TLR2/NF-κB pathway. Targeting the ALKBH5-NLRP3 positive feedback loop alleviates cardiomyocyte pyroptosis after myocardial infarction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1