Enhancing the Cardiogenic Potential of Human Mesenchymal Stem Cells via Extracellular Matrix Proteins.

IF 1.5 Q3 MEDICINE, RESEARCH & EXPERIMENTAL International Journal of Molecular and Cellular Medicine Pub Date : 2024-01-01 DOI:10.22088/IJMCM.BUMS.13.4.337
Galina Chizhikova, Mikhail Khotin, Natalya Bildyug
{"title":"Enhancing the Cardiogenic Potential of Human Mesenchymal Stem Cells via Extracellular Matrix Proteins.","authors":"Galina Chizhikova, Mikhail Khotin, Natalya Bildyug","doi":"10.22088/IJMCM.BUMS.13.4.337","DOIUrl":null,"url":null,"abstract":"<p><p>Current <i>in vitro</i> models of cardiogenic differentiation include a variety of manipulations and stimulating agents, which interfere with the application of such models for preclinical drug testing. So, the aim of this study was to develop an approach for cardiogenic differentiation <i>in vitro</i> with a minimum of manipulations and to assess the influence of the extracellular matrix protein collagen IV on the cardiogenic potential of human mesenchymal stem cells (MSCs). Cardiogenic markers were analyzed by immunofluorescence staining and Western blot analysis. The results showed that collagen IV increased the cardiac marker GATA4 and altered the level of muscle actin isoforms, α-smooth muscle actin and α-cardiac muscle actin, in two different lines of human MSCs. The results indicate that the use of matrices containing collagen IV may increase the cardiogenic potential of human MSCs and may be a promising approach to obtain an <i>in vitro</i> model for cardiogenic differentiation suitable for preclinical drug discovery.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 4","pages":"337-349"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.13.4.337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Current in vitro models of cardiogenic differentiation include a variety of manipulations and stimulating agents, which interfere with the application of such models for preclinical drug testing. So, the aim of this study was to develop an approach for cardiogenic differentiation in vitro with a minimum of manipulations and to assess the influence of the extracellular matrix protein collagen IV on the cardiogenic potential of human mesenchymal stem cells (MSCs). Cardiogenic markers were analyzed by immunofluorescence staining and Western blot analysis. The results showed that collagen IV increased the cardiac marker GATA4 and altered the level of muscle actin isoforms, α-smooth muscle actin and α-cardiac muscle actin, in two different lines of human MSCs. The results indicate that the use of matrices containing collagen IV may increase the cardiogenic potential of human MSCs and may be a promising approach to obtain an in vitro model for cardiogenic differentiation suitable for preclinical drug discovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).
期刊最新文献
Cytoprotective Effect of Gallic Acid against Injuries Promoted by Therapeutic Ionizing Radiation in Preosteoblast Cells. Dysregulation of LncRNAs ANRIL, MALAT1, and LINC00305 in Coronary Slow Flow Patients: Implications for Inflammation and Endothelial Dysfunction. Evaluation of the Cytotoxicity of Secondary Bioactive Compounds Produced by Streptomyces in Soil against a Colon Cancer Cell Line. Evaluation of the Immune Checkpoints, TIM-3 and PD-1, as well as Anti-Inflammatory Cytokines IL-10, and TGF-β along with Diseases Activity in Chronic Spontaneous Urticaria. Evaluations of Biomarkers CDX1 and CDX2 in Gastric Cancer Prognosis: A Meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1