The Vitamin D-Sirt1/PGC1α Axis Regulates Bone Metabolism and Counteracts Osteoporosis.

IF 5.9 1区 医学 Q1 ORTHOPEDICS Journal of Orthopaedic Translation Pub Date : 2025-01-16 eCollection Date: 2025-01-01 DOI:10.1016/j.jot.2024.10.011
Cuicui Yang, Lulu Chen, Xiaoli Guo, Haijian Sun, Dengshun Miao
{"title":"The Vitamin D-Sirt1/PGC1α Axis Regulates Bone Metabolism and Counteracts Osteoporosis.","authors":"Cuicui Yang, Lulu Chen, Xiaoli Guo, Haijian Sun, Dengshun Miao","doi":"10.1016/j.jot.2024.10.011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Objective: Vitamin D insufficiency is a major contributor to osteoporosis. This study aimed to elucidate the mechanisms by which the vitamin D-Sirt1/PGC1α axis regulates bone metabolism and counteracts osteoporosis induced by active vitamin D insufficiency.</p><p><strong>Methods: </strong>Mouse models including Sirt1 transgenic (Sirt1<sup>Tg</sup>), Cyp27b1<sup>+/-</sup> (active vitamin D deficient), and compound Sirt1<sup>Tg</sup>Cyp27b1<sup>+/-</sup> mice were utilized. Bone parameters were assessed by radiography, micro-CT, histology, and immunohistochemistry. In vitro studies used bone marrow-derived mesenchymal stem cells (BM-MSCs). Gene and protein expression were analyzed by RT-PCR and Western blotting. Chromatin immunoprecipitation and luciferase assays investigated transcriptional regulation. Effects of resveratrol supplementation were examined.</p><p><strong>Results: </strong>1,25-dihydroxyvitamin D (1,25(OH)<sub>2</sub>D) insufficiency caused downregulation of Sirt1 expression, leading to accelerated bone loss. Overexpression of Sirt1 in mesenchymal stem cells corrected bone loss by inhibiting oxidative stress, DNA damage, osteocyte senescence and senescence-associated secretory phenotype, promoting osteoblastic bone formation, and reducing osteoclastic bone resorption. 1,25(OH)<sub>2</sub>D<sub>3</sub> transcriptionally upregulated Sirt1 expression in BM-MSCs through vitamin D receptor binding to the Sirt1 gene promoter. Resveratrol, a Sirt1 agonist, attenuated osteoporosis induced by 1,25(OH)<sub>2</sub>D insufficiency by modulating the Sirt1/PGC1α axis. Sirt1 interacted with and deacetylated PGC1α, a transcriptional coactivator involved in mitochondrial biogenesis and energy metabolism. Deacetylated PGC1α mediated the effects of Sirt1 on osteogenesis, oxidative stress, and cellular senescence in BM-MSCs.</p><p><strong>Conclusion: </strong>This study elucidated the critical role of the vitamin D-Sirt1/PGC1α axis in regulating bone metabolism and counteracting osteoporosis induced by active vitamin D insufficiency. The findings highlight the potential of this axis as a therapeutic target for the prevention and treatment of osteoporosis.</p>","PeriodicalId":16636,"journal":{"name":"Journal of Orthopaedic Translation","volume":"50 ","pages":"211-222"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Translation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jot.2024.10.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Objective: Vitamin D insufficiency is a major contributor to osteoporosis. This study aimed to elucidate the mechanisms by which the vitamin D-Sirt1/PGC1α axis regulates bone metabolism and counteracts osteoporosis induced by active vitamin D insufficiency.

Methods: Mouse models including Sirt1 transgenic (Sirt1Tg), Cyp27b1+/- (active vitamin D deficient), and compound Sirt1TgCyp27b1+/- mice were utilized. Bone parameters were assessed by radiography, micro-CT, histology, and immunohistochemistry. In vitro studies used bone marrow-derived mesenchymal stem cells (BM-MSCs). Gene and protein expression were analyzed by RT-PCR and Western blotting. Chromatin immunoprecipitation and luciferase assays investigated transcriptional regulation. Effects of resveratrol supplementation were examined.

Results: 1,25-dihydroxyvitamin D (1,25(OH)2D) insufficiency caused downregulation of Sirt1 expression, leading to accelerated bone loss. Overexpression of Sirt1 in mesenchymal stem cells corrected bone loss by inhibiting oxidative stress, DNA damage, osteocyte senescence and senescence-associated secretory phenotype, promoting osteoblastic bone formation, and reducing osteoclastic bone resorption. 1,25(OH)2D3 transcriptionally upregulated Sirt1 expression in BM-MSCs through vitamin D receptor binding to the Sirt1 gene promoter. Resveratrol, a Sirt1 agonist, attenuated osteoporosis induced by 1,25(OH)2D insufficiency by modulating the Sirt1/PGC1α axis. Sirt1 interacted with and deacetylated PGC1α, a transcriptional coactivator involved in mitochondrial biogenesis and energy metabolism. Deacetylated PGC1α mediated the effects of Sirt1 on osteogenesis, oxidative stress, and cellular senescence in BM-MSCs.

Conclusion: This study elucidated the critical role of the vitamin D-Sirt1/PGC1α axis in regulating bone metabolism and counteracting osteoporosis induced by active vitamin D insufficiency. The findings highlight the potential of this axis as a therapeutic target for the prevention and treatment of osteoporosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Orthopaedic Translation
Journal of Orthopaedic Translation Medicine-Orthopedics and Sports Medicine
CiteScore
11.80
自引率
13.60%
发文量
91
审稿时长
29 days
期刊介绍: The Journal of Orthopaedic Translation (JOT) is the official peer-reviewed, open access journal of the Chinese Speaking Orthopaedic Society (CSOS) and the International Chinese Musculoskeletal Research Society (ICMRS). It is published quarterly, in January, April, July and October, by Elsevier.
期刊最新文献
Accumulation of advanced oxidation protein products aggravates bone-fat imbalance during skeletal aging. Current status of nano-embedded growth factors and stem cells delivery to bone for targeted repair and regeneration. Humanin reduces nucleus pulposus cells ferroptosis to alleviate intervertebral disc degeneration: An in vitro and in vivo study. Role of YAP/TAZ in bone diseases: A transductor from mechanics to biology. Unveiling MiR-3085-3p as a modulator of cartilage degeneration in facet joint osteoarthritis: A novel therapeutic target.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1