Advancements and Applications of Artificial Intelligence in Pharmaceutical Sciences: A Comprehensive Review.

IF 1.8 4区 医学 Q3 PHARMACOLOGY & PHARMACY Iranian Journal of Pharmaceutical Research Pub Date : 2024-10-15 eCollection Date: 2024-01-01 DOI:10.5812/ijpr-150510
Negar Mottaghi-Dastjerdi, Mohammad Soltany-Rezaee-Rad
{"title":"Advancements and Applications of Artificial Intelligence in Pharmaceutical Sciences: A Comprehensive Review.","authors":"Negar Mottaghi-Dastjerdi, Mohammad Soltany-Rezaee-Rad","doi":"10.5812/ijpr-150510","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has revolutionized the pharmaceutical industry, improving drug discovery, development, and personalized patient care. Through machine learning (ML), deep learning, natural language processing (NLP), and robotic automation, AI has enhanced efficiency, accuracy, and innovation in the field. The purpose of this review is to shed light on the practical applications and potential of AI in various pharmaceutical fields. These fields include medicinal chemistry, pharmaceutics, pharmacology and toxicology, clinical pharmacy, pharmaceutical biotechnology, pharmaceutical nanotechnology, pharmacognosy, and pharmaceutical management and economics. By leveraging AI technologies such as ML, deep learning, NLP, and robotic automation, this review delves into the role of AI in enhancing drug discovery, development processes, and personalized patient care. It analyzes AI's impact in specific areas such as drug synthesis planning, formulation development, toxicology predictions, pharmacy automation, and market analysis. Artificial intelligence integration into pharmaceutical sciences has significantly improved medicinal chemistry, drug discovery, and synthesis planning. In pharmaceutics, AI has advanced personalized medicine and formulation development. In pharmacology and toxicology, AI offers predictive capabilities for drug mechanisms and toxic effects. In clinical pharmacy, AI has facilitated automation and enhanced patient care. Additionally, AI has contributed to protein engineering, gene therapy, nanocarrier design, discovery of natural product therapeutics, and pharmaceutical management and economics, including marketing research and clinical trials management. Artificial intelligence has transformed pharmaceuticals, improving efficiency, accuracy, and innovation. This review highlights AI's role in drug development and personalized care, serving as a reference for professionals. The future promises a revolutionized field with AI-driven methodologies.</p>","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"23 1","pages":"e150510"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787549/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5812/ijpr-150510","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) has revolutionized the pharmaceutical industry, improving drug discovery, development, and personalized patient care. Through machine learning (ML), deep learning, natural language processing (NLP), and robotic automation, AI has enhanced efficiency, accuracy, and innovation in the field. The purpose of this review is to shed light on the practical applications and potential of AI in various pharmaceutical fields. These fields include medicinal chemistry, pharmaceutics, pharmacology and toxicology, clinical pharmacy, pharmaceutical biotechnology, pharmaceutical nanotechnology, pharmacognosy, and pharmaceutical management and economics. By leveraging AI technologies such as ML, deep learning, NLP, and robotic automation, this review delves into the role of AI in enhancing drug discovery, development processes, and personalized patient care. It analyzes AI's impact in specific areas such as drug synthesis planning, formulation development, toxicology predictions, pharmacy automation, and market analysis. Artificial intelligence integration into pharmaceutical sciences has significantly improved medicinal chemistry, drug discovery, and synthesis planning. In pharmaceutics, AI has advanced personalized medicine and formulation development. In pharmacology and toxicology, AI offers predictive capabilities for drug mechanisms and toxic effects. In clinical pharmacy, AI has facilitated automation and enhanced patient care. Additionally, AI has contributed to protein engineering, gene therapy, nanocarrier design, discovery of natural product therapeutics, and pharmaceutical management and economics, including marketing research and clinical trials management. Artificial intelligence has transformed pharmaceuticals, improving efficiency, accuracy, and innovation. This review highlights AI's role in drug development and personalized care, serving as a reference for professionals. The future promises a revolutionized field with AI-driven methodologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
52
审稿时长
2 months
期刊介绍: The Iranian Journal of Pharmaceutical Research (IJPR) is a peer-reviewed multi-disciplinary pharmaceutical publication, scheduled to appear quarterly and serve as a means for scientific information exchange in the international pharmaceutical forum. Specific scientific topics of interest to the journal include, but are not limited to: pharmaceutics, industrial pharmacy, pharmacognosy, toxicology, medicinal chemistry, novel analytical methods for drug characterization, computational and modeling approaches to drug design, bio-medical experience, clinical investigation, rational drug prescribing, pharmacoeconomics, biotechnology, nanotechnology, biopharmaceutics and physical pharmacy.
期刊最新文献
C-Phycocyanin and Phycocyanobilin as a Novel Adjuvant in Hepatitis B Vaccine. The COVID-19 Pandemic and the Resilience of the Pharmaceutical Supply Chain: Lessons from Past Experiences and Strategies for the Future. Curcumin-Etoposide Synergy: Unveiling the Molecular Mechanisms of Enhanced Apoptosis and Chemoresistance Attenuation in Breast Cancer. Dual COX-2/TNF-α Inhibitors as Promising Anti-inflammatory and Cancer Chemopreventive Agents: A Review. Advancements and Applications of Artificial Intelligence in Pharmaceutical Sciences: A Comprehensive Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1