Protective effects of MET channels on aminoglycosides- and cisplatin-induced ototoxicity.

IF 3.2 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL International Journal of Medical Sciences Pub Date : 2025-01-13 eCollection Date: 2025-01-01 DOI:10.7150/ijms.103270
Lile Ouyang, Lu Ma, Yong Feng
{"title":"Protective effects of MET channels on aminoglycosides- and cisplatin-induced ototoxicity.","authors":"Lile Ouyang, Lu Ma, Yong Feng","doi":"10.7150/ijms.103270","DOIUrl":null,"url":null,"abstract":"<p><p>Aminoglycosides and cisplatin drugs are extensively utilized for their high efficacy in treating various conditions in the clinic, however, their ototoxic side effects warrant significant attention. These drugs could penetrate the inner ear via specific channels or transporters, which not only affect the survival of hair cells but also induce the overproduction of reactive oxygen species. Currently, scientific research mainly addresses this issue through the downstream intervention of reactive oxygen species. However, recent studies have revealed that directly reducing the uptake of these drugs by hair cells can effectively avoid initial damage. In particular, the interactions between drugs and hair cells, as well as the specific functions of relevant channels and transporters, can be explored in detail through the use of molecular dynamics simulations. The swift advancement in the field of structural biology has shed light on the structural functions of various channels and transporters closely related to drug absorption, such as electromechanical transduction channels (MET) and organic cation transporter-2, etc., providing theoretical basis and potential targets for novel ear protection strategies. It is, therefore, imperative to investigate the regulatory role of the MET channel in the up-taking of ototoxic drugs, serving as a pivotal point for the development of preventative and therapeutic approaches. This review aims to highlight the mechanism of inhibition of ototoxic substances absorption by auditory hair cells, explore how to develop novel ear protection methods by targeting these channels and transporters, and provide a new perspective and strategy for addressing drug-induced ototoxicity. The approach to protecting hair cells by targeting these channels and transporters not only broadens our understanding of the underlying mechanisms of ototoxicity, but could also spur further research and progress in the field of auditory protection.</p>","PeriodicalId":14031,"journal":{"name":"International Journal of Medical Sciences","volume":"22 3","pages":"732-744"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783074/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/ijms.103270","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aminoglycosides and cisplatin drugs are extensively utilized for their high efficacy in treating various conditions in the clinic, however, their ototoxic side effects warrant significant attention. These drugs could penetrate the inner ear via specific channels or transporters, which not only affect the survival of hair cells but also induce the overproduction of reactive oxygen species. Currently, scientific research mainly addresses this issue through the downstream intervention of reactive oxygen species. However, recent studies have revealed that directly reducing the uptake of these drugs by hair cells can effectively avoid initial damage. In particular, the interactions between drugs and hair cells, as well as the specific functions of relevant channels and transporters, can be explored in detail through the use of molecular dynamics simulations. The swift advancement in the field of structural biology has shed light on the structural functions of various channels and transporters closely related to drug absorption, such as electromechanical transduction channels (MET) and organic cation transporter-2, etc., providing theoretical basis and potential targets for novel ear protection strategies. It is, therefore, imperative to investigate the regulatory role of the MET channel in the up-taking of ototoxic drugs, serving as a pivotal point for the development of preventative and therapeutic approaches. This review aims to highlight the mechanism of inhibition of ototoxic substances absorption by auditory hair cells, explore how to develop novel ear protection methods by targeting these channels and transporters, and provide a new perspective and strategy for addressing drug-induced ototoxicity. The approach to protecting hair cells by targeting these channels and transporters not only broadens our understanding of the underlying mechanisms of ototoxicity, but could also spur further research and progress in the field of auditory protection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Medical Sciences
International Journal of Medical Sciences MEDICINE, GENERAL & INTERNAL-
CiteScore
7.20
自引率
0.00%
发文量
185
审稿时长
2.7 months
期刊介绍: Original research papers, reviews, and short research communications in any medical related area can be submitted to the Journal on the understanding that the work has not been published previously in whole or part and is not under consideration for publication elsewhere. Manuscripts in basic science and clinical medicine are both considered. There is no restriction on the length of research papers and reviews, although authors are encouraged to be concise. Short research communication is limited to be under 2500 words.
期刊最新文献
OCT4 promotes lung cancer progression through upregulation of VEGF-correlated chemokine-1. Olfactory and Gustatory Disturbances as Early Indicators of Lung Cancer in Patients with Sleep Disorders: A Retrospective Cohort Study from the TriNetX US Collaborative Networks. Spinal Metastasis Pain Surveillance: A Comprehensive Imaging-Based Tool Design for Evaluating Metastatic Burden and Guiding Therapeutic Strategies. Taming Pancreatic Cancer: Ardisia virens Kurz-Derived 4-Hydroxy-2-Methoxy-6-Tridecylphenyl Acetate as a Potent Tubulin Polymerization Inhibitor for Targeted Pancreatic Ductal Adenocarcinoma Therapy. Prevalence and Risk Factors of Type 2 Diabetes Mellitus Among Hepatitis B Virus Patients: A Large Retrospective Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1