Quercetin-loaded solid lipid nanoparticles for enhanced anti-helminthic activity

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2025-01-31 DOI:10.1016/j.ijpharm.2025.125308
Sunidhi Sharma , Ruchika Thukral , Lachhman Das Singla , Neena Singla , Diptiman Choudhury
{"title":"Quercetin-loaded solid lipid nanoparticles for enhanced anti-helminthic activity","authors":"Sunidhi Sharma ,&nbsp;Ruchika Thukral ,&nbsp;Lachhman Das Singla ,&nbsp;Neena Singla ,&nbsp;Diptiman Choudhury","doi":"10.1016/j.ijpharm.2025.125308","DOIUrl":null,"url":null,"abstract":"<div><div>Quercetin, a naturally occurring flavonoid, exhibits various anti-carcinogenic, anti-viral, anti-inflammatory properties, and anti-helminthic properties. Still, a major portion of orally administered quercetin is metabolized in the intestine and only little amount get absorbed in the portal veins, attributing to its poor bioavailability. The lipid content of food increases the solubility, which inspired us to fabricate lipid-based nanoparticles that will be biocompatible, orally administrable, and enhance the effectiveness of quercetin in hosts. Quercetin-loaded solid lipid nanoparticles (SLN-Qt) are spherical-shaped, water-soluble in nature, and nanocarriers having a hydrodynamic size of 130.7 ± 42.0 nm showing a drug entrapment efficiency of 79.75 % with sustained drug release of 37.5 ± 1.5 % within the first 24 h at pH 6.4. The drug release was observed till 6 days with 93.7 ± 3.0 % of drug release at pH 7.4. These results suggest improved drug entrapment, high saturation solubility, and better drug distribution. The <em>in-vivo</em> analysis was performed in house rats (<em>Rattus rattus</em>), which were found infected with <em>Syphacia muris, Aspicularis tetraptera</em>, <em>Hymenolepis diminuta</em>, <em>Hymenolepis nana</em>, <em>Cysticercus fasciolaris</em>, <em>Calodium hepaticum,</em> and/ or <em>Trichuris muris</em>. SLN-Qt (200 mg/Kg) treatment showed a significant reduction of parasite egg counts (85.09 ± 15.00 %) of gastrointestinal helminths after 3-dose weekly treatment. Liver histology and biochemical analysis of blood plasma and liver homogenate showed no toxic effects of quercetin and SLN-Qt. Therefore, SLN-Qt presents a promising strategy for delivering poorly soluble drugs and could be a valuable tool in controlling parasitic infections and diseases.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"672 ","pages":"Article 125308"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325001449","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Quercetin, a naturally occurring flavonoid, exhibits various anti-carcinogenic, anti-viral, anti-inflammatory properties, and anti-helminthic properties. Still, a major portion of orally administered quercetin is metabolized in the intestine and only little amount get absorbed in the portal veins, attributing to its poor bioavailability. The lipid content of food increases the solubility, which inspired us to fabricate lipid-based nanoparticles that will be biocompatible, orally administrable, and enhance the effectiveness of quercetin in hosts. Quercetin-loaded solid lipid nanoparticles (SLN-Qt) are spherical-shaped, water-soluble in nature, and nanocarriers having a hydrodynamic size of 130.7 ± 42.0 nm showing a drug entrapment efficiency of 79.75 % with sustained drug release of 37.5 ± 1.5 % within the first 24 h at pH 6.4. The drug release was observed till 6 days with 93.7 ± 3.0 % of drug release at pH 7.4. These results suggest improved drug entrapment, high saturation solubility, and better drug distribution. The in-vivo analysis was performed in house rats (Rattus rattus), which were found infected with Syphacia muris, Aspicularis tetraptera, Hymenolepis diminuta, Hymenolepis nana, Cysticercus fasciolaris, Calodium hepaticum, and/ or Trichuris muris. SLN-Qt (200 mg/Kg) treatment showed a significant reduction of parasite egg counts (85.09 ± 15.00 %) of gastrointestinal helminths after 3-dose weekly treatment. Liver histology and biochemical analysis of blood plasma and liver homogenate showed no toxic effects of quercetin and SLN-Qt. Therefore, SLN-Qt presents a promising strategy for delivering poorly soluble drugs and could be a valuable tool in controlling parasitic infections and diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Follicle-stimulating hormone peptide-conjugated liposomes in the treatment of epithelial ovarian cancer through the induction of M2-to-M1 macrophage repolarization. Harnessing the power of inorganic nanoparticles for the management of TNBC. Stability and recrystallization of amorphous solid dispersions prepared by hot-melt extrusion and spray drying. Targeted nasal delivery of LNP-mRNAs aerosolised by Rayleigh breakup technology. Challenges and opportunities in targeting epigenetic mechanisms for pulmonary arterial hypertension treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1