{"title":"T Cell-Derived Apoptotic Extracellular Vesicles Ameliorate Bone Loss via CD39 and CD73-Mediated ATP Hydrolysis.","authors":"Xiaoshan Yang, Yang Zhou, Fuxing Zhou, Lili Bao, Zhengyan Wang, Zihan Li, Feng Ding, Huijuan Kuang, Huan Liu, Shenglong Tan, Xinyuan Qiu, Huan Jing, Shiyu Liu, Dandan Ma","doi":"10.2147/IJN.S491222","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteoporosis is a major public health concern characterized by decreased bone density. Among various therapeutic strategies, apoptotic extracellular vesicles (ApoEVs) have emerged as promising agents in tissue regeneration. Specifically, T cell-derived ApoEVs have shown substantial potential in facilitating bone regeneration. However, it remains unclear whether ApoEVs can promote bone mass recovery through enzymatic activity mediated by membrane surface molecules. Therefore, this study aimed to investigate whether T cell-derived ApoEVs could promote bone mass recovery in osteoporosis mice and reveal the underlying mechanisms.</p><p><strong>Methods: </strong>ApoEVs were isolated through sequential centrifugation, and their proteomic profiles were identified via mass spectrometry. Western blot and immunogold staining confirmed the enrichment of CD39 and CD73 on ApoEVs. The role of CD39 and CD73 in hydrolyzing adenosine triphosphate (ATP) to adenosine was evaluated by quantifying the levels of ATP and adenosine. Inhibitors of CD39 and CD73, and an A2BR antagonist were used to explore the molecular mechanism of ApoEVs in promoting bone regeneration.</p><p><strong>Results: </strong>ApoEVs significantly reduced bone loss and promote the osteogenic differentiation of BMMSCs in ovariectomy (OVX) mice. We observed increased levels of extracellular ATP and a decrease in CD39 and CD73, key enzymes in ATP-to-adenosine conversion in bone marrow of OVX mice. We found that ApoEVs are enriched with CD39 and CD73 on their membranes, which enable the hydrolysis of extracellular ATP to adenosine both in vitro and in vivo. The adenosine generated by ApoEVs inhibits the inflammatory response and promotes osteogenesis through A2BR and downstream PKA signaling.</p><p><strong>Conclusion: </strong>T cell-derived ApoEVs are enriched with CD39 and CD73, enabling them to hydrolyze extracellular ATP to adenosine, thereby promoting bone regeneration via A2BR and PKA signaling pathway. Our data underscore the substantive role of T cell-derived ApoEVs to treat osteoporosis, thus providing new ideas for the development of ApoEVs-based therapies in tissue regeneration.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"1083-1100"},"PeriodicalIF":6.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S491222","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Osteoporosis is a major public health concern characterized by decreased bone density. Among various therapeutic strategies, apoptotic extracellular vesicles (ApoEVs) have emerged as promising agents in tissue regeneration. Specifically, T cell-derived ApoEVs have shown substantial potential in facilitating bone regeneration. However, it remains unclear whether ApoEVs can promote bone mass recovery through enzymatic activity mediated by membrane surface molecules. Therefore, this study aimed to investigate whether T cell-derived ApoEVs could promote bone mass recovery in osteoporosis mice and reveal the underlying mechanisms.
Methods: ApoEVs were isolated through sequential centrifugation, and their proteomic profiles were identified via mass spectrometry. Western blot and immunogold staining confirmed the enrichment of CD39 and CD73 on ApoEVs. The role of CD39 and CD73 in hydrolyzing adenosine triphosphate (ATP) to adenosine was evaluated by quantifying the levels of ATP and adenosine. Inhibitors of CD39 and CD73, and an A2BR antagonist were used to explore the molecular mechanism of ApoEVs in promoting bone regeneration.
Results: ApoEVs significantly reduced bone loss and promote the osteogenic differentiation of BMMSCs in ovariectomy (OVX) mice. We observed increased levels of extracellular ATP and a decrease in CD39 and CD73, key enzymes in ATP-to-adenosine conversion in bone marrow of OVX mice. We found that ApoEVs are enriched with CD39 and CD73 on their membranes, which enable the hydrolysis of extracellular ATP to adenosine both in vitro and in vivo. The adenosine generated by ApoEVs inhibits the inflammatory response and promotes osteogenesis through A2BR and downstream PKA signaling.
Conclusion: T cell-derived ApoEVs are enriched with CD39 and CD73, enabling them to hydrolyze extracellular ATP to adenosine, thereby promoting bone regeneration via A2BR and PKA signaling pathway. Our data underscore the substantive role of T cell-derived ApoEVs to treat osteoporosis, thus providing new ideas for the development of ApoEVs-based therapies in tissue regeneration.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.