Modification of an automated precision farming robot for high temporal resolution measurement of leaf angle dynamics using stereo vision

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2025-01-13 DOI:10.1016/j.mex.2025.103169
Frederik Hennecke , Jonas Bömer , René H.J. Heim
{"title":"Modification of an automated precision farming robot for high temporal resolution measurement of leaf angle dynamics using stereo vision","authors":"Frederik Hennecke ,&nbsp;Jonas Bömer ,&nbsp;René H.J. Heim","doi":"10.1016/j.mex.2025.103169","DOIUrl":null,"url":null,"abstract":"<div><div>In agriculture, the plant leaf angle influences light use efficiency and photosynthesis and, consequently, the overall crop performance. Leaf angle measurements are used in plant phenotyping, plant breeding, and remote sensing to study plant function and structure. Traditional manual leaf angle measurements have limited precision as they are labor- and time-intensive due to challenging environmental conditions and highly dynamic plant processes. To enable more detailed studies on leaf angles, we modified a well-established automated farming robot to obtain high-resolution 3D point clouds at customizable intervals of individual plants using stereo vision. We demonstrate the system's accuracy and reliability, with minimal deviation from reference values. The method can be utilized by other researchers to gather data on leaf angles and other structural plant traits at regular intervals to access the dynamics of leaves, plants, and canopies. The system's low cost and adaptability can enhance the efficiency of crop monitoring in plant breeding and phenotyping experiments. Detailed documentation and code are available on <span><span>GitHub</span><svg><path></path></svg></span>.<ul><li><span>•</span><span><div>An open-source farming robot is retrofitted to function as an automatic data collection platform</div></span></li><li><span>•</span><span><div>Hard to access leaf angles can be retrieved with high accuracy</div></span></li><li><span>•</span><span><div>Leaf angle dynamics can be observed with high temporal resolution</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103169"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In agriculture, the plant leaf angle influences light use efficiency and photosynthesis and, consequently, the overall crop performance. Leaf angle measurements are used in plant phenotyping, plant breeding, and remote sensing to study plant function and structure. Traditional manual leaf angle measurements have limited precision as they are labor- and time-intensive due to challenging environmental conditions and highly dynamic plant processes. To enable more detailed studies on leaf angles, we modified a well-established automated farming robot to obtain high-resolution 3D point clouds at customizable intervals of individual plants using stereo vision. We demonstrate the system's accuracy and reliability, with minimal deviation from reference values. The method can be utilized by other researchers to gather data on leaf angles and other structural plant traits at regular intervals to access the dynamics of leaves, plants, and canopies. The system's low cost and adaptability can enhance the efficiency of crop monitoring in plant breeding and phenotyping experiments. Detailed documentation and code are available on GitHub.
  • An open-source farming robot is retrofitted to function as an automatic data collection platform
  • Hard to access leaf angles can be retrieved with high accuracy
  • Leaf angle dynamics can be observed with high temporal resolution

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
期刊最新文献
Determination of the method of induction of mutations by gamma radiation in soybeans (Glycine max L. Merrill) for tolerance to carbonic rot produced by the fungus Macrophomina phaseolina (Tassi Goid.) Simple DNA extraction for museum beetle specimens to unlock genetic data from historical collections A new method and information system based on artificial intelligence for black flight identification Multi-criteria evaluation and multi-method analysis for appropriately selecting renewable energy sources in Colombia EMI-LTI: An enhanced integrated model for lung tumor identification using Gabor filter and ROI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1