Depthwise cortical iron relates to functional connectivity and fluid cognition in healthy aging

IF 3.7 3区 医学 Q2 GERIATRICS & GERONTOLOGY Neurobiology of Aging Pub Date : 2025-01-28 DOI:10.1016/j.neurobiolaging.2025.01.006
Jenna L. Merenstein , Jiayi Zhao , David J. Madden
{"title":"Depthwise cortical iron relates to functional connectivity and fluid cognition in healthy aging","authors":"Jenna L. Merenstein ,&nbsp;Jiayi Zhao ,&nbsp;David J. Madden","doi":"10.1016/j.neurobiolaging.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>Age-related differences in fluid cognition have been associated with both the merging of functional brain networks, defined from resting-state functional magnetic resonance imaging (rsfMRI), and with elevated cortical iron, assessed by quantitative susceptibility mapping (QSM). Limited information is available, however, regarding the depthwise profile of cortical iron and its potential relation to functional connectivity. Here, using an adult lifespan sample (<em>n</em> = 138; 18–80 years), we assessed relations among graph theoretical measures of functional connectivity, column-based depthwise measures of cortical iron, and fluid cognition (i.e., tests of memory, perceptual-motor speed, executive function). Increased age was related both to less segregated functional networks and to increased cortical iron, especially for superficial depths. Functional network segregation mediated age-related differences in memory, whereas depthwise iron mediated age-related differences in general fluid cognition. Lastly, higher mean parietal iron predicted lower network segregation for adults younger than 45 years of age. These findings suggest that functional connectivity and depthwise cortical iron have distinct, complementary roles in the relation between age and fluid cognition in healthy adults.</div></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"148 ","pages":"Pages 27-40"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458025000181","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Age-related differences in fluid cognition have been associated with both the merging of functional brain networks, defined from resting-state functional magnetic resonance imaging (rsfMRI), and with elevated cortical iron, assessed by quantitative susceptibility mapping (QSM). Limited information is available, however, regarding the depthwise profile of cortical iron and its potential relation to functional connectivity. Here, using an adult lifespan sample (n = 138; 18–80 years), we assessed relations among graph theoretical measures of functional connectivity, column-based depthwise measures of cortical iron, and fluid cognition (i.e., tests of memory, perceptual-motor speed, executive function). Increased age was related both to less segregated functional networks and to increased cortical iron, especially for superficial depths. Functional network segregation mediated age-related differences in memory, whereas depthwise iron mediated age-related differences in general fluid cognition. Lastly, higher mean parietal iron predicted lower network segregation for adults younger than 45 years of age. These findings suggest that functional connectivity and depthwise cortical iron have distinct, complementary roles in the relation between age and fluid cognition in healthy adults.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Aging
Neurobiology of Aging 医学-老年医学
CiteScore
8.40
自引率
2.40%
发文量
225
审稿时长
67 days
期刊介绍: Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.
期刊最新文献
Normative aging results in degradation of gene networks in a zebra finch basal ganglia nucleus dedicated to vocal behavior Age-related synaptic signatures of brain and cognitive reserve in the rat hippocampus and parahippocampal regions Exploring morphological and microstructural signatures across the Alzheimer's spectrum and risk factors Exploring the domain specificity and the neural correlates of memory unawareness in Alzheimer's disease Erratum to: Homozygous alpha-synuclein p.A53V in familial Parkinson’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1