Dynamic changes of excitatory and inhibitory synapses in layer II/III of the primary motor cortex after peripheral nerve repair.

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neuroscience Pub Date : 2025-01-31 DOI:10.1016/j.neuroscience.2025.01.059
Jie Song, Aihemaitijiang Yusufu, Jiayu Sun, Hongyu Zhou, Hui Chen, Dun Liu, Qiyue Zhang, Li Li
{"title":"Dynamic changes of excitatory and inhibitory synapses in layer II/III of the primary motor cortex after peripheral nerve repair.","authors":"Jie Song, Aihemaitijiang Yusufu, Jiayu Sun, Hongyu Zhou, Hui Chen, Dun Liu, Qiyue Zhang, Li Li","doi":"10.1016/j.neuroscience.2025.01.059","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injury disrupts communication between the primary motor cortex (M1) and the target muscle, leading to alterations in synaptic plasticity within the lesion projection zone (LPZ). While nerve repair holds the potential to restore this pathway and further modulate synaptic plasticity within the LPZ, the underlying mechanisms remain incompletely understood. In this study, we established a rat model with immediate repair following unilateral median nerve transection and categorized the functional recovery of the affected limb into three phases: the injury phase, recovery phase, and rehabilitation phase, corresponding to stages of muscle non-reinnervation, gradual reinnervation, and completed reinnervation, respectively. Our findings revealed that during these phases, excitatory synaptic transmission in M1 layer II/III pyramidal neurons initially decreases, then increases, and ultimately returns to baseline levels. Conversely, inhibitory synaptic transmission initially increases, then decreases, and remains reduced even after full peripheral recovery, accompanied by upregulation of inhibitory synaptic receptors. These findings suggest that excitatory and inhibitory synaptic plasticity play opposing roles in the nerve repair process, with excitatory plasticity primarily involved in short-term responses and inhibitory plasticity contributing to both short-term and long-term modulation.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2025.01.059","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Peripheral nerve injury disrupts communication between the primary motor cortex (M1) and the target muscle, leading to alterations in synaptic plasticity within the lesion projection zone (LPZ). While nerve repair holds the potential to restore this pathway and further modulate synaptic plasticity within the LPZ, the underlying mechanisms remain incompletely understood. In this study, we established a rat model with immediate repair following unilateral median nerve transection and categorized the functional recovery of the affected limb into three phases: the injury phase, recovery phase, and rehabilitation phase, corresponding to stages of muscle non-reinnervation, gradual reinnervation, and completed reinnervation, respectively. Our findings revealed that during these phases, excitatory synaptic transmission in M1 layer II/III pyramidal neurons initially decreases, then increases, and ultimately returns to baseline levels. Conversely, inhibitory synaptic transmission initially increases, then decreases, and remains reduced even after full peripheral recovery, accompanied by upregulation of inhibitory synaptic receptors. These findings suggest that excitatory and inhibitory synaptic plasticity play opposing roles in the nerve repair process, with excitatory plasticity primarily involved in short-term responses and inhibitory plasticity contributing to both short-term and long-term modulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
期刊最新文献
Editorial Board Editorial Board Tangeretin enhances sedative activity of diazepam in Swiss mice through GABAA receptor interaction: In vivo and in silico approaches Alterations in degree centrality and functional connectivity associated with cognitive Impairment in myotonic dystrophy type 1:A Preliminary functional MRI study. Tips for Quality Publishing; Lessons from the Neuroscience Editorial Team.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1