Fenugreek seed extract combined with acellular nerve allografts promotes peripheral nerve regeneration and neovascularization in sciatic nerve defects

IF 3.4 3区 环境科学与生态学 Q3 CELL & TISSUE ENGINEERING Regenerative Therapy Pub Date : 2025-01-17 DOI:10.1016/j.reth.2024.12.015
Yuanyuan Han, Zhiwei Liu, Chunjie Song
{"title":"Fenugreek seed extract combined with acellular nerve allografts promotes peripheral nerve regeneration and neovascularization in sciatic nerve defects","authors":"Yuanyuan Han,&nbsp;Zhiwei Liu,&nbsp;Chunjie Song","doi":"10.1016/j.reth.2024.12.015","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Acellular nerve allografts (ANAs) have been confirmed to improve the repair and reconstruction of long peripheral nerve defects. However, its efficacy is not comparable to that of autologous nerve grafts, which are used as the gold standard for treating peripheral nerve defects. Our study investigated whether fenugreek seed extract (FSE) exhibits neuroprotective potential and enhances the therapeutic outcomes of ANA repair in peripheral nerve defects.</div></div><div><h3>Methods</h3><div>Rat Schwann cells were treated with FSE to assess the effects of FSE on cell proliferation and their secretion function of neurotrophic factors <em>in vitro</em>. Sprague-Dawley rats with a unilateral 15-mm sciatic nerve defect were randomized into the ANA group (the 15-mm defect was replaced by an 18-mm ANA), the ANA + FSE group (the 15-mm defect was repaired with an 18-mm ANA with FSE administration for four weeks), and the Auto group (the 15-mm defect was repaired with an autologous graft). After four weeks post-surgery, various behavioral tests and electrophysiological assays were performed to evaluate the motor and sensory behavior as well as nerve conduction of rats. Then, rats were sacrificed, and the nerve grafts were collected for toluidine blue staining, RT-qPCR, immunofluorescence staining, immunohistochemical staining to evaluate nerve regeneration, neovascularization, and neuroinflammation. Their gastrocnemius was harvested for Masson's trichrome staining to examine gastrocnemius muscle recovery.</div></div><div><h3>Results</h3><div>FSE treatment promoted Schwann cell proliferation and its secretion of neurotrophic factors <em>in vitro</em>. Compared with ANAs alone, FSE treatment combined with ANAs enhanced axonal regeneration, upregulated S100, NF200, P0, MBP, and GAP43 expression, facilitated angiogenesis, and elevated neurotrophic factor expression in regenerating nerves of rats with sciatic nerve defects. In addition, FSE treatment promoted gastrocnemius muscle recovery, stimulated motor and sensory functional recovery and nerve conduction, and mitigated neuroinflammation in rats with sciatic nerve defects after repair with ANAs.</div></div><div><h3>Conclusion</h3><div>FSE treatment improves the beneficial effects of ANA repair on sciatic nerve defects.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"28 ","pages":"Pages 383-393"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320424002359","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Acellular nerve allografts (ANAs) have been confirmed to improve the repair and reconstruction of long peripheral nerve defects. However, its efficacy is not comparable to that of autologous nerve grafts, which are used as the gold standard for treating peripheral nerve defects. Our study investigated whether fenugreek seed extract (FSE) exhibits neuroprotective potential and enhances the therapeutic outcomes of ANA repair in peripheral nerve defects.

Methods

Rat Schwann cells were treated with FSE to assess the effects of FSE on cell proliferation and their secretion function of neurotrophic factors in vitro. Sprague-Dawley rats with a unilateral 15-mm sciatic nerve defect were randomized into the ANA group (the 15-mm defect was replaced by an 18-mm ANA), the ANA + FSE group (the 15-mm defect was repaired with an 18-mm ANA with FSE administration for four weeks), and the Auto group (the 15-mm defect was repaired with an autologous graft). After four weeks post-surgery, various behavioral tests and electrophysiological assays were performed to evaluate the motor and sensory behavior as well as nerve conduction of rats. Then, rats were sacrificed, and the nerve grafts were collected for toluidine blue staining, RT-qPCR, immunofluorescence staining, immunohistochemical staining to evaluate nerve regeneration, neovascularization, and neuroinflammation. Their gastrocnemius was harvested for Masson's trichrome staining to examine gastrocnemius muscle recovery.

Results

FSE treatment promoted Schwann cell proliferation and its secretion of neurotrophic factors in vitro. Compared with ANAs alone, FSE treatment combined with ANAs enhanced axonal regeneration, upregulated S100, NF200, P0, MBP, and GAP43 expression, facilitated angiogenesis, and elevated neurotrophic factor expression in regenerating nerves of rats with sciatic nerve defects. In addition, FSE treatment promoted gastrocnemius muscle recovery, stimulated motor and sensory functional recovery and nerve conduction, and mitigated neuroinflammation in rats with sciatic nerve defects after repair with ANAs.

Conclusion

FSE treatment improves the beneficial effects of ANA repair on sciatic nerve defects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Regenerative Therapy
Regenerative Therapy Engineering-Biomedical Engineering
CiteScore
6.00
自引率
2.30%
发文量
106
审稿时长
49 days
期刊介绍: Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine. Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.
期刊最新文献
Human placental extract improves liver cirrhosis in mice with regulation of macrophages and senescent cells Therapeutic potential of exosomes derived from human endometrial mesenchymal stem cells for heart tissue regeneration after myocardial infarction Effects of basic fibroblast growth factor on cartilage to bone: Time-course histological analysis of in vivo cartilage formation from polydactyly-derived chondrocytes PDZRN3 regulates adipogenesis of mesenchymal progenitors in muscle Cell culture expansion media choice affects secretory, protective and immuno-modulatory features of adipose mesenchymal stromal cell-derived secretomes for orthopaedic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1