Serum/glucose starvation enhances binding of miR-4745-5p and miR-6798-5p to HNRNPA1 mRNA 3'UTR: A novel method to identify miRNAs binding to mRNA 3'UTR using λN peptide-boxB sequence.

IF 5.9 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Non-coding RNA Research Pub Date : 2025-01-07 eCollection Date: 2025-04-01 DOI:10.1016/j.ncrna.2025.01.001
Tetsuyuki Takahashi, Mai Funamura, Shun Wakai, Takao Hijikata
{"title":"Serum/glucose starvation enhances binding of miR-4745-5p and miR-6798-5p to <i>HNRNPA1</i> mRNA 3'UTR: A novel method to identify miRNAs binding to mRNA 3'UTR using λN peptide-boxB sequence.","authors":"Tetsuyuki Takahashi, Mai Funamura, Shun Wakai, Takao Hijikata","doi":"10.1016/j.ncrna.2025.01.001","DOIUrl":null,"url":null,"abstract":"<p><p>Serum/glucose starvation causes complete loss of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) without altering mRNA levels. However, the mechanisms driving hnRNP A1 downregulation during serum/glucose starvation are not yet well understood. Using the novel interaction between the λN peptide and boxB sequence (λN/boxB system) and miRNA microarray analysis, we aimed to identify specific-binding microRNAs (miRs or miRNAs) targeting <i>HNRNPA1</i> mRNA 3'UTR under serum/glucose-starved conditions. Four miRNAs were identified as serum/glucose starvation-driven miRNAs for <i>HNRNPA1</i> mRNA 3'UTR. Reporter assays, anti-miRNA and mutated miRNA-based assays, photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation/reverse transcribed-quantitative polymerase chain reaction, and transient overexpression of miRNAs showed that miR-4745-5p and miR-6798-5p suppress hnRNP A1 protein levels via enhancement of binding to <i>HNRNPA1</i> mRNA 3'UTR under serum/glucose-starved condition. miR-4745-5p and miR-6798-5p overexpression significantly decreased growth rates, which was rescued by co-transfection with anti-miRNA for miR-4745-5p and miR-6798-5p. Anti-miRNA transfection for miR-4745-5p and miR-6798-5p significantly increased growth rates under serum/glucose-starved conditions. Furthermore, hnRNP A1 overexpression recovered miR-4745-5p- and miR-6798-5p-induced growth suppression. These findings indicated that miR-4745-5p and miR-6798-5p are serum/glucose starvation-driven miRNAs for hnRNP A1 and validated the λN/boxB system as a simple and useful method for detecting mRNA 3'UTR-bound miRNA.</p>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"11 ","pages":"188-199"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ncrna.2025.01.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Serum/glucose starvation causes complete loss of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) without altering mRNA levels. However, the mechanisms driving hnRNP A1 downregulation during serum/glucose starvation are not yet well understood. Using the novel interaction between the λN peptide and boxB sequence (λN/boxB system) and miRNA microarray analysis, we aimed to identify specific-binding microRNAs (miRs or miRNAs) targeting HNRNPA1 mRNA 3'UTR under serum/glucose-starved conditions. Four miRNAs were identified as serum/glucose starvation-driven miRNAs for HNRNPA1 mRNA 3'UTR. Reporter assays, anti-miRNA and mutated miRNA-based assays, photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation/reverse transcribed-quantitative polymerase chain reaction, and transient overexpression of miRNAs showed that miR-4745-5p and miR-6798-5p suppress hnRNP A1 protein levels via enhancement of binding to HNRNPA1 mRNA 3'UTR under serum/glucose-starved condition. miR-4745-5p and miR-6798-5p overexpression significantly decreased growth rates, which was rescued by co-transfection with anti-miRNA for miR-4745-5p and miR-6798-5p. Anti-miRNA transfection for miR-4745-5p and miR-6798-5p significantly increased growth rates under serum/glucose-starved conditions. Furthermore, hnRNP A1 overexpression recovered miR-4745-5p- and miR-6798-5p-induced growth suppression. These findings indicated that miR-4745-5p and miR-6798-5p are serum/glucose starvation-driven miRNAs for hnRNP A1 and validated the λN/boxB system as a simple and useful method for detecting mRNA 3'UTR-bound miRNA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Non-coding RNA Research
Non-coding RNA Research Medicine-Biochemistry (medical)
CiteScore
7.70
自引率
6.00%
发文量
39
审稿时长
49 days
期刊介绍: Non-coding RNA Research aims to publish high quality research and review articles on the mechanistic role of non-coding RNAs in all human diseases. This interdisciplinary journal will welcome research dealing with all aspects of non-coding RNAs-their biogenesis, regulation and role in disease progression. The focus of this journal will be to publish translational studies as well as well-designed basic studies with translational and clinical implications. The non-coding RNAs of particular interest will be microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), U-RNAs/small nuclear RNAs (snRNAs), exosomal/extracellular RNAs (exRNAs), Piwi-interacting RNAs (piRNAs) and long non-coding RNAs. Topics of interest will include, but not limited to: -Regulation of non-coding RNAs -Targets and regulatory functions of non-coding RNAs -Epigenetics and non-coding RNAs -Biological functions of non-coding RNAs -Non-coding RNAs as biomarkers -Non-coding RNA-based therapeutics -Prognostic value of non-coding RNAs -Pharmacological studies involving non-coding RNAs -Population based and epidemiological studies -Gene expression / proteomics / computational / pathway analysis-based studies on non-coding RNAs with functional validation -Novel strategies to manipulate non-coding RNAs expression and function -Clinical studies on evaluation of non-coding RNAs The journal will strive to disseminate cutting edge research, showcasing the ever-evolving importance of non-coding RNAs in modern day research and medicine.
期刊最新文献
Inhibition of MALAT1 facilitates ROS accumulation via the Keap1/HO-1 pathway to enhance photodynamic therapy in secondary hyperparathyroidism. Serum/glucose starvation enhances binding of miR-4745-5p and miR-6798-5p to HNRNPA1 mRNA 3'UTR: A novel method to identify miRNAs binding to mRNA 3'UTR using λN peptide-boxB sequence. LncRNA NEAT1-206 regulates autophagy of human umbilical cord mesenchymal stem cells through the WNT5A/Ca2+ signaling pathway under senescence stress. Identification and validation of lncRNA mutation hotspot SNPs associated with myasthenia gravis susceptibility. Recent advances of miR-23 in human diseases and growth development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1