Improving drug-target affinity prediction by adaptive self-supervised learning.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2025-01-03 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2622
Qing Ye, Yaxin Sun
{"title":"Improving drug-target affinity prediction by adaptive self-supervised learning.","authors":"Qing Ye, Yaxin Sun","doi":"10.7717/peerj-cs.2622","DOIUrl":null,"url":null,"abstract":"<p><p>Computational drug-target affinity prediction is important for drug screening and discovery. Currently, self-supervised learning methods face two major challenges in drug-target affinity prediction. The first difficulty lies in the phenomenon of sample mismatch: self-supervised learning processes drug and target samples independently, while actual prediction requires the integration of drug-target pairs. Another challenge is the mismatch between the broadness of self-supervised learning objectives and the precision of biological mechanisms of drug-target affinity (<i>i.e</i>., the induced-fit principle). The former focuses on global feature extraction, while the latter emphasizes the importance of local precise matching. To address these issues, an adaptive self-supervised learning-based drug-target affinity prediction (ASSLDTA) was designed. ASSLDTA integrates a novel adaptive self-supervised learning (ASSL) module with a high-level feature learning network to extract the feature. The ASSL leverages a large amount of unlabeled training data to effectively capture low-level features of drugs and targets. Its goal is to maximize the retention of original feature information, thereby bridging the objective gap between self-supervised learning and drug-target affinity prediction and alleviating the sample mismatch problem. The high-level feature learning network, on the other hand, focuses on extracting effective high-level features for affinity prediction through a small amount of labeled data. Through this two-stage feature extraction design, each stage undertakes specific tasks, fully leveraging the advantages of each model while efficiently integrating information from different data sources, providing a more accurate and comprehensive solution for drug-target affinity prediction. In our experiments, ASSLDTA is much better than other deep methods, and the result of ASSLDTA is significantly increased by learning adaptive self-supervised learning-based features, which validates the effectiveness of our ASSLDTA.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2622"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784864/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2622","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Computational drug-target affinity prediction is important for drug screening and discovery. Currently, self-supervised learning methods face two major challenges in drug-target affinity prediction. The first difficulty lies in the phenomenon of sample mismatch: self-supervised learning processes drug and target samples independently, while actual prediction requires the integration of drug-target pairs. Another challenge is the mismatch between the broadness of self-supervised learning objectives and the precision of biological mechanisms of drug-target affinity (i.e., the induced-fit principle). The former focuses on global feature extraction, while the latter emphasizes the importance of local precise matching. To address these issues, an adaptive self-supervised learning-based drug-target affinity prediction (ASSLDTA) was designed. ASSLDTA integrates a novel adaptive self-supervised learning (ASSL) module with a high-level feature learning network to extract the feature. The ASSL leverages a large amount of unlabeled training data to effectively capture low-level features of drugs and targets. Its goal is to maximize the retention of original feature information, thereby bridging the objective gap between self-supervised learning and drug-target affinity prediction and alleviating the sample mismatch problem. The high-level feature learning network, on the other hand, focuses on extracting effective high-level features for affinity prediction through a small amount of labeled data. Through this two-stage feature extraction design, each stage undertakes specific tasks, fully leveraging the advantages of each model while efficiently integrating information from different data sources, providing a more accurate and comprehensive solution for drug-target affinity prediction. In our experiments, ASSLDTA is much better than other deep methods, and the result of ASSLDTA is significantly increased by learning adaptive self-supervised learning-based features, which validates the effectiveness of our ASSLDTA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Novel transfer learning approach for hand drawn mathematical geometric shapes classification. Applying auxiliary supervised depth-assisted transformer and cross modal attention fusion in monocular 3D object detection. Process mining applications in healthcare: a systematic literature review. Social media network public opinion emotion classification method based on multi-feature fusion and multi-scale hybrid neural network. Evolving techniques in sentiment analysis: a comprehensive review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1