SLFCNet: an ultra-lightweight and efficient strawberry feature classification network.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2025-01-02 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2085
Wenchao Xu, Yangxu Wang, Jiahao Yang
{"title":"SLFCNet: an ultra-lightweight and efficient strawberry feature classification network.","authors":"Wenchao Xu, Yangxu Wang, Jiahao Yang","doi":"10.7717/peerj-cs.2085","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As modern agricultural technology advances, the automated detection, classification, and harvesting of strawberries have become an inevitable trend. Among these tasks, the classification of strawberries stands as a pivotal juncture. Nevertheless, existing object detection methods struggle with substantial computational demands, high resource utilization, and reduced detection efficiency. These challenges make deployment on edge devices difficult and lead to suboptimal user experiences.</p><p><strong>Methods: </strong>In this study, we have developed a lightweight model capable of real-time detection and classification of strawberry fruit, named the Strawberry Lightweight Feature Classify Network (SLFCNet). This innovative system incorporates a lightweight encoder and a self-designed feature extraction module called the Combined Convolutional Concatenation and Sequential Convolutional (C3SC). While maintaining model compactness, this architecture significantly enhances its feature decoding capabilities. To evaluate the model's generalization potential, we utilized a high-resolution strawberry dataset collected directly from the fields. By employing image augmentation techniques, we conducted experimental comparisons between manually counted data and the model's inference-based detection and classification results.</p><p><strong>Results: </strong>The SLFCNet model achieves an average precision of 98.9% in the mAP@0.5 metric, with a precision rate of 94.7% and a recall rate of 93.2%. Notably, SLFCNet features a streamlined design, resulting in a compact model size of only 3.57 MB. On an economical GTX 1080 Ti GPU, the processing time per image is a mere 4.1 ms. This indicates that the model can smoothly run on edge devices, ensuring real-time performance. Thus, it emerges as a novel solution for the automation and management of strawberry harvesting, providing real-time performance and presenting a new solution for the automatic management of strawberry picking.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2085"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784530/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2085","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: As modern agricultural technology advances, the automated detection, classification, and harvesting of strawberries have become an inevitable trend. Among these tasks, the classification of strawberries stands as a pivotal juncture. Nevertheless, existing object detection methods struggle with substantial computational demands, high resource utilization, and reduced detection efficiency. These challenges make deployment on edge devices difficult and lead to suboptimal user experiences.

Methods: In this study, we have developed a lightweight model capable of real-time detection and classification of strawberry fruit, named the Strawberry Lightweight Feature Classify Network (SLFCNet). This innovative system incorporates a lightweight encoder and a self-designed feature extraction module called the Combined Convolutional Concatenation and Sequential Convolutional (C3SC). While maintaining model compactness, this architecture significantly enhances its feature decoding capabilities. To evaluate the model's generalization potential, we utilized a high-resolution strawberry dataset collected directly from the fields. By employing image augmentation techniques, we conducted experimental comparisons between manually counted data and the model's inference-based detection and classification results.

Results: The SLFCNet model achieves an average precision of 98.9% in the mAP@0.5 metric, with a precision rate of 94.7% and a recall rate of 93.2%. Notably, SLFCNet features a streamlined design, resulting in a compact model size of only 3.57 MB. On an economical GTX 1080 Ti GPU, the processing time per image is a mere 4.1 ms. This indicates that the model can smoothly run on edge devices, ensuring real-time performance. Thus, it emerges as a novel solution for the automation and management of strawberry harvesting, providing real-time performance and presenting a new solution for the automatic management of strawberry picking.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Novel transfer learning approach for hand drawn mathematical geometric shapes classification. Applying auxiliary supervised depth-assisted transformer and cross modal attention fusion in monocular 3D object detection. Process mining applications in healthcare: a systematic literature review. Social media network public opinion emotion classification method based on multi-feature fusion and multi-scale hybrid neural network. Evolving techniques in sentiment analysis: a comprehensive review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1