A review of graph-powered data quality applications for IoT monitoring sensor networks

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Network and Computer Applications Pub Date : 2025-01-28 DOI:10.1016/j.jnca.2025.104116
Pau Ferrer-Cid, Jose M. Barcelo-Ordinas, Jorge Garcia-Vidal
{"title":"A review of graph-powered data quality applications for IoT monitoring sensor networks","authors":"Pau Ferrer-Cid,&nbsp;Jose M. Barcelo-Ordinas,&nbsp;Jorge Garcia-Vidal","doi":"10.1016/j.jnca.2025.104116","DOIUrl":null,"url":null,"abstract":"<div><div>The development of Internet of Things (IoT) technologies has led to the widespread adoption of monitoring networks for a wide variety of applications, such as smart cities, environmental monitoring, and precision agriculture. A major research focus in recent years has been the development of graph-based techniques to improve the quality of data from sensor networks, a key aspect of the use of sensed data in decision-making processes, digital twins, and other applications. Emphasis has been placed on the development of machine learning (ML) and signal processing techniques over graphs, taking advantage of the benefits provided by the use of structured data through a graph topology. Many technologies such as graph signal processing (GSP) or the successful graph neural networks (GNNs) have been used for data quality enhancement tasks. This survey focuses on graph-based models for data quality control in monitoring sensor networks. In addition, it introduces the technical details that are commonly used to provide powerful graph-based solutions for data quality tasks in sensor networks, such as missing value imputation, outlier detection, or virtual sensing. To conclude, different challenges and emerging trends have been identified, e.g., graph-based models for digital twins or model transferability and generalization.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"236 ","pages":"Article 104116"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S108480452500013X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The development of Internet of Things (IoT) technologies has led to the widespread adoption of monitoring networks for a wide variety of applications, such as smart cities, environmental monitoring, and precision agriculture. A major research focus in recent years has been the development of graph-based techniques to improve the quality of data from sensor networks, a key aspect of the use of sensed data in decision-making processes, digital twins, and other applications. Emphasis has been placed on the development of machine learning (ML) and signal processing techniques over graphs, taking advantage of the benefits provided by the use of structured data through a graph topology. Many technologies such as graph signal processing (GSP) or the successful graph neural networks (GNNs) have been used for data quality enhancement tasks. This survey focuses on graph-based models for data quality control in monitoring sensor networks. In addition, it introduces the technical details that are commonly used to provide powerful graph-based solutions for data quality tasks in sensor networks, such as missing value imputation, outlier detection, or virtual sensing. To conclude, different challenges and emerging trends have been identified, e.g., graph-based models for digital twins or model transferability and generalization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
期刊最新文献
Editorial Board DAPNEML: Disease-diet associations prediction in a NEtwork using a machine learning based approach A Comprehensive Survey of Smart Contracts Vulnerability Detection Tools: Techniques and Methodologies MuLPP: A multi-level privacy preserving for blockchain-based bilateral P2P energy trading PRISM: PSI and Voronoi diagram based Automated Exposure Notification with location privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1