Synergistic mapping of urban tree canopy height using ICESat-2 data and GF-2 imagery

Xiaodi Xu , Ya Zhang , Peng Fu , Chaoya Dang , Bowen Cai , Qingwei Zhuang , Zhenfeng Shao , Deren Li , Qing Ding
{"title":"Synergistic mapping of urban tree canopy height using ICESat-2 data and GF-2 imagery","authors":"Xiaodi Xu ,&nbsp;Ya Zhang ,&nbsp;Peng Fu ,&nbsp;Chaoya Dang ,&nbsp;Bowen Cai ,&nbsp;Qingwei Zhuang ,&nbsp;Zhenfeng Shao ,&nbsp;Deren Li ,&nbsp;Qing Ding","doi":"10.1016/j.jag.2024.104348","DOIUrl":null,"url":null,"abstract":"<div><div>Mapping urban top of canopy height (UTCH) is essential for quantifying urban vegetation carbon storage and developing effective vegetation management strategies. However, the scarcity and uneven distribution of urban measurement samples pose significant challenges to accurately estimating UTCH on a large scale in complex urban environments. To address this issue, this study utilized ICESat-2 photon spot height data as reference samples, in conjunction with high-resolution GF-2 remote sensing data, to estimate UTCH. To achieve UTCH mapping at a resolution of 4 m, a synergistic model integrating data from the GF-2 and ICESat-2 grid-based canopy height was constructed using the Random Forest technique. The model’s performance was evaluated using 111 urban tree canopy height samples collected across different urban areas. The experimental results demonstrated a moderate correlation between estimated and actual canopy heights, with a coefficient of determination (<em>R</em>) = 0.53, root mean square error (<em>RMSE</em>) = 2.9 m, and mean absolute error (<em>MAE</em>) = 2.04 m. Texture information, the red band, and MNDVI are key indicators for determining UTCH, with contribution percentages of 25.29 %, 13.7 %, and 25.75 %, respectively. As a result, the UTCH model created by fusing remote sensing spectral data with satellite-based lidar data can accurately estimate UTCH and offer a practical solution for predicting UTCH on a regional or even global scale.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104348"},"PeriodicalIF":8.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224007064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Mapping urban top of canopy height (UTCH) is essential for quantifying urban vegetation carbon storage and developing effective vegetation management strategies. However, the scarcity and uneven distribution of urban measurement samples pose significant challenges to accurately estimating UTCH on a large scale in complex urban environments. To address this issue, this study utilized ICESat-2 photon spot height data as reference samples, in conjunction with high-resolution GF-2 remote sensing data, to estimate UTCH. To achieve UTCH mapping at a resolution of 4 m, a synergistic model integrating data from the GF-2 and ICESat-2 grid-based canopy height was constructed using the Random Forest technique. The model’s performance was evaluated using 111 urban tree canopy height samples collected across different urban areas. The experimental results demonstrated a moderate correlation between estimated and actual canopy heights, with a coefficient of determination (R) = 0.53, root mean square error (RMSE) = 2.9 m, and mean absolute error (MAE) = 2.04 m. Texture information, the red band, and MNDVI are key indicators for determining UTCH, with contribution percentages of 25.29 %, 13.7 %, and 25.75 %, respectively. As a result, the UTCH model created by fusing remote sensing spectral data with satellite-based lidar data can accurately estimate UTCH and offer a practical solution for predicting UTCH on a regional or even global scale.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ICESat-2数据和GF-2图像的城市树冠高度协同制图
城市冠层顶高度(UTCH)是量化城市植被碳储量和制定有效的植被管理策略的重要依据。然而,城市测量样本的稀缺性和分布的不均匀性给复杂城市环境下大范围准确估计UTCH带来了重大挑战。为了解决这一问题,本研究利用ICESat-2光子点高度数据作为参考样本,结合高分辨率GF-2遥感数据估算UTCH。为了实现4 m分辨率的UTCH制图,利用随机森林技术构建了一个综合GF-2和ICESat-2网格冠层高度数据的协同模型。利用在不同城市地区收集的111个城市树冠高度样本对模型的性能进行了评估。实验结果表明,估算冠层高度与实际冠层高度具有中等相关性,决定系数(R) = 0.53,均方根误差(RMSE) = 2.9 m,平均绝对误差(MAE) = 2.04 m。纹理信息、红光带和MNDVI是确定UTCH的关键指标,其贡献率分别为25.29%、13.7%和25.75%。因此,将遥感光谱数据与基于卫星的激光雷达数据融合建立的UTCH模型可以准确估计UTCH,并为区域甚至全球范围内的UTCH预测提供了实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Disturbance history and canopy structure drive growing season albedo dynamics in boreal forests Seeing through the noise: A cross-modal guided framework for hyperspectral image classification under multi-type degradations EL-Mamba: An edge-aware and locally-aggregated Mamba network for building height estimation using Sentinel-1 and Sentinel-2 imagery Machine learning-based high resolution spatial economic modeling of biomass energy potential in Southeast Asia Remote sensing of a gantry-equipped facility: Optimizing accuracy by integrating SfM photogrammetry and laserscan computer graphics through fixed base model geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1