Faxiang Bu, Yuqi Deng, Lijun Lu, Yan Li, Wenxu Song, Zhaoliang Yang, Xu Luo, Xin Dong, Ruijie Yi, Dali Yang, Shengchun Wang, Aiwen Lei, Wu Li
{"title":"Electrocatalytic Alkene Hydrogenation/Deuteration","authors":"Faxiang Bu, Yuqi Deng, Lijun Lu, Yan Li, Wenxu Song, Zhaoliang Yang, Xu Luo, Xin Dong, Ruijie Yi, Dali Yang, Shengchun Wang, Aiwen Lei, Wu Li","doi":"10.1021/jacs.4c14320","DOIUrl":null,"url":null,"abstract":"Traditional reductions of alkenes, such as using stoichiometric reductants with waste generation and catalytic hydrogenation with high-pressure H<sub>2</sub>, are accompanied by environmental or safety issues. Herein, we demonstrated a universal method for the electrocatalytic hydrogenation and deuteration of alkenes with modified electrodes under ambient temperature. The key M-H/M-D species for alkene reduction were generated from the electrolysis of H<sub>2</sub>O/D<sub>2</sub>O on modified electrodes, which avoided the usage of H<sub>2</sub> and D<sub>2</sub>. Mono-, di-, tri-, and tetra-substituted alkenes were successfully reduced in this electrocatalytic system using H<sub>2</sub>O and D<sub>2</sub>O as hydrogen and deuterium sources. Electron-donating/-withdrawing alkenes, alkenes with other easily reducible functional groups, and complicated natural products and drugs were all reductive hydrogenated and deuterated with excellent yields (85 examples, yields up to 99%). Faraday efficiency of this efficient method could reach 84%. Moreover, the catalytic amount of metal could decrease to less than 0.01 mol %.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"50 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14320","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional reductions of alkenes, such as using stoichiometric reductants with waste generation and catalytic hydrogenation with high-pressure H2, are accompanied by environmental or safety issues. Herein, we demonstrated a universal method for the electrocatalytic hydrogenation and deuteration of alkenes with modified electrodes under ambient temperature. The key M-H/M-D species for alkene reduction were generated from the electrolysis of H2O/D2O on modified electrodes, which avoided the usage of H2 and D2. Mono-, di-, tri-, and tetra-substituted alkenes were successfully reduced in this electrocatalytic system using H2O and D2O as hydrogen and deuterium sources. Electron-donating/-withdrawing alkenes, alkenes with other easily reducible functional groups, and complicated natural products and drugs were all reductive hydrogenated and deuterated with excellent yields (85 examples, yields up to 99%). Faraday efficiency of this efficient method could reach 84%. Moreover, the catalytic amount of metal could decrease to less than 0.01 mol %.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.