Electrocatalytic Alkene Hydrogenation/Deuteration

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-02-04 DOI:10.1021/jacs.4c14320
Faxiang Bu, Yuqi Deng, Lijun Lu, Yan Li, Wenxu Song, Zhaoliang Yang, Xu Luo, Xin Dong, Ruijie Yi, Dali Yang, Shengchun Wang, Aiwen Lei, Wu Li
{"title":"Electrocatalytic Alkene Hydrogenation/Deuteration","authors":"Faxiang Bu, Yuqi Deng, Lijun Lu, Yan Li, Wenxu Song, Zhaoliang Yang, Xu Luo, Xin Dong, Ruijie Yi, Dali Yang, Shengchun Wang, Aiwen Lei, Wu Li","doi":"10.1021/jacs.4c14320","DOIUrl":null,"url":null,"abstract":"Traditional reductions of alkenes, such as using stoichiometric reductants with waste generation and catalytic hydrogenation with high-pressure H<sub>2</sub>, are accompanied by environmental or safety issues. Herein, we demonstrated a universal method for the electrocatalytic hydrogenation and deuteration of alkenes with modified electrodes under ambient temperature. The key M-H/M-D species for alkene reduction were generated from the electrolysis of H<sub>2</sub>O/D<sub>2</sub>O on modified electrodes, which avoided the usage of H<sub>2</sub> and D<sub>2</sub>. Mono-, di-, tri-, and tetra-substituted alkenes were successfully reduced in this electrocatalytic system using H<sub>2</sub>O and D<sub>2</sub>O as hydrogen and deuterium sources. Electron-donating/-withdrawing alkenes, alkenes with other easily reducible functional groups, and complicated natural products and drugs were all reductive hydrogenated and deuterated with excellent yields (85 examples, yields up to 99%). Faraday efficiency of this efficient method could reach 84%. Moreover, the catalytic amount of metal could decrease to less than 0.01 mol %.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"50 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14320","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional reductions of alkenes, such as using stoichiometric reductants with waste generation and catalytic hydrogenation with high-pressure H2, are accompanied by environmental or safety issues. Herein, we demonstrated a universal method for the electrocatalytic hydrogenation and deuteration of alkenes with modified electrodes under ambient temperature. The key M-H/M-D species for alkene reduction were generated from the electrolysis of H2O/D2O on modified electrodes, which avoided the usage of H2 and D2. Mono-, di-, tri-, and tetra-substituted alkenes were successfully reduced in this electrocatalytic system using H2O and D2O as hydrogen and deuterium sources. Electron-donating/-withdrawing alkenes, alkenes with other easily reducible functional groups, and complicated natural products and drugs were all reductive hydrogenated and deuterated with excellent yields (85 examples, yields up to 99%). Faraday efficiency of this efficient method could reach 84%. Moreover, the catalytic amount of metal could decrease to less than 0.01 mol %.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Electrocatalytic Alkene Hydrogenation/Deuteration High-Pressure Effects on an Octa-Hydrated Curium Complex: An Experimental and Theoretical Investigation Ion Irradiation-Induced Coordinatively Unsaturated Zn Sites for Enhanced CO Hydrogenation Total Synthesis of DMOA-Derived Meroterpenoids: Achieving Selectivity in the Synthesis of (+)-Berkeleyacetal D and (+)-Peniciacetal I Precision Molecular Engineering of Compact Near-Infrared Fluorophores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1