{"title":"N,N,C Heteroscorpionates as a Platform for Monovalent Ni Chemistry","authors":"Li Gu, and , Alex McSkimming*, ","doi":"10.1021/acs.organomet.4c0045010.1021/acs.organomet.4c00450","DOIUrl":null,"url":null,"abstract":"<p >We report herein the synthesis and characterization of a number of monovalent Ni complexes bound by a class of <i>N</i>,<i>N</i>,C heteroscorpionate ligands and their derivatives. One-electron reduction of Ni<sup>2+</sup> complexes supported by less bulky heteroscorpionates led to a thermally unstable Ni<sup>+</sup> species that could be trapped as the corresponding PPh<sub>3</sub> adduct. In situ reaction of the aforementioned Ni<sup>+</sup> complex with a bulky aryl azide affords a transient Ni<sup>3+</sup> imide, for which attack of the C donor at the N<sub>imido</sub> atom, followed by rapid isomerization, furnishes a three-coordinate Ni<sup>+</sup> complex ligated by a new type of “expanded” <i>N</i>,<i>N</i>,C chelate. An <i>N</i>,<i>N</i>,C heteroscorpionate ligand with large Ph<sub>2</sub>(CH<sub>3</sub>)C– substituents was able to support a thermally stable, isolable Ni<sup>+</sup> complex, in which a phenyl group of one Ph<sub>2</sub>(CH<sub>3</sub>)C– unit binds Ni in an η<sup>2</sup> fashion. This complex proved to be relatively unreactive toward organic azides. The labile C donor in the former Ni<sup>+</sup> complex could be trapped via the addition of B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, affording a zwitterionic Ni<sup>+</sup> complex. All Ni<sup>+</sup> species were characterized by electron paramagnetic resonance (EPR) spectroscopy, which was corroborated by density functional theory (DFT) calculations. Our results are expected to guide future efforts by ourselves and others in the pursuit of low-valent Ni complexes and Ni imides in general.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"44 2","pages":"418–426 418–426"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.organomet.4c00450","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organometallics","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.organomet.4c00450","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
We report herein the synthesis and characterization of a number of monovalent Ni complexes bound by a class of N,N,C heteroscorpionate ligands and their derivatives. One-electron reduction of Ni2+ complexes supported by less bulky heteroscorpionates led to a thermally unstable Ni+ species that could be trapped as the corresponding PPh3 adduct. In situ reaction of the aforementioned Ni+ complex with a bulky aryl azide affords a transient Ni3+ imide, for which attack of the C donor at the Nimido atom, followed by rapid isomerization, furnishes a three-coordinate Ni+ complex ligated by a new type of “expanded” N,N,C chelate. An N,N,C heteroscorpionate ligand with large Ph2(CH3)C– substituents was able to support a thermally stable, isolable Ni+ complex, in which a phenyl group of one Ph2(CH3)C– unit binds Ni in an η2 fashion. This complex proved to be relatively unreactive toward organic azides. The labile C donor in the former Ni+ complex could be trapped via the addition of B(C6F5)3, affording a zwitterionic Ni+ complex. All Ni+ species were characterized by electron paramagnetic resonance (EPR) spectroscopy, which was corroborated by density functional theory (DFT) calculations. Our results are expected to guide future efforts by ourselves and others in the pursuit of low-valent Ni complexes and Ni imides in general.
期刊介绍:
Organometallics is the flagship journal of organometallic chemistry and records progress in one of the most active fields of science, bridging organic and inorganic chemistry. The journal publishes Articles, Communications, Reviews, and Tutorials (instructional overviews) that depict research on the synthesis, structure, bonding, chemical reactivity, and reaction mechanisms for a variety of applications, including catalyst design and catalytic processes; main-group, transition-metal, and lanthanide and actinide metal chemistry; synthetic aspects of polymer science and materials science; and bioorganometallic chemistry.