Fe/Co Bimetal-Containing Carbon Prepared from a 2D Metalloporphyrin-Based MOF for the Optimal ORR/OER Bifunction and Its Application in Zn–Air Batteries
{"title":"Fe/Co Bimetal-Containing Carbon Prepared from a 2D Metalloporphyrin-Based MOF for the Optimal ORR/OER Bifunction and Its Application in Zn–Air Batteries","authors":"Zhen Fu, Hongyan Zhuo, Xue Liu, Wenjuan Li, Hao Song, Zhuang Shi, Linlin Feng, Tenglong Jin, Wenmiao Chen* and Yanli Chen*, ","doi":"10.1021/acsaem.4c0257110.1021/acsaem.4c02571","DOIUrl":null,"url":null,"abstract":"<p >The Fe–N<sub>4</sub>-based Fe single-atom catalyst exhibits high efficiency in oxygen reduction reaction (ORR) activity, while Co oxides demonstrate excellent oxygen evolution reaction (OER) activity. In this study, we report an easily synthesized carbon-based catalyst CoFe@CNT that incorporates both Fe single atoms and CoO nanoparticles. This catalyst is derived from a two-dimensional metalloporphyrin-based metal–organic framework (CoFeMOF) composed of an FeTCPP (5,10,15,20-tetrakis(p-carboxylphenyl)porphyrin iron) building unit coordinated with Co<sup>2+</sup> and 4,4′-bipyridine. CoFe@CNT exhibits superior ORR (half-wave potential = 0.85 V) and OER (overpotential at 10 mA cm<sup>–2</sup> = 370 mV) performances and better stability compared to both ZnFe@CNT and Co@CNT (from the respective ZnFeMOF and CoMOF precursors) and commercial Pt/C catalysts. XPS analysis reveals that the presence of both Fe–N<sub>4</sub> single-atom and CoO nanoparticles in CoFe@CNT not only induces electron transfer from Co to Fe but also generates a higher combined content of pyridinic N and Fe–N<sub>4</sub> compared to both ZnFe@CNT and Co@CNT, which enhances the catalytic activity. A Zn–air battery using CoFe@CNT as the cathode catalyst achieves a high power density (115 mW cm<sup>–2</sup>), outperforming the Pt/C catalyst. The design and synthesis of this 2D MOF-derived electrocatalyst offer promising prospects for developing high-density metal–air batteries.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 2","pages":"1051–1059 1051–1059"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02571","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Fe–N4-based Fe single-atom catalyst exhibits high efficiency in oxygen reduction reaction (ORR) activity, while Co oxides demonstrate excellent oxygen evolution reaction (OER) activity. In this study, we report an easily synthesized carbon-based catalyst CoFe@CNT that incorporates both Fe single atoms and CoO nanoparticles. This catalyst is derived from a two-dimensional metalloporphyrin-based metal–organic framework (CoFeMOF) composed of an FeTCPP (5,10,15,20-tetrakis(p-carboxylphenyl)porphyrin iron) building unit coordinated with Co2+ and 4,4′-bipyridine. CoFe@CNT exhibits superior ORR (half-wave potential = 0.85 V) and OER (overpotential at 10 mA cm–2 = 370 mV) performances and better stability compared to both ZnFe@CNT and Co@CNT (from the respective ZnFeMOF and CoMOF precursors) and commercial Pt/C catalysts. XPS analysis reveals that the presence of both Fe–N4 single-atom and CoO nanoparticles in CoFe@CNT not only induces electron transfer from Co to Fe but also generates a higher combined content of pyridinic N and Fe–N4 compared to both ZnFe@CNT and Co@CNT, which enhances the catalytic activity. A Zn–air battery using CoFe@CNT as the cathode catalyst achieves a high power density (115 mW cm–2), outperforming the Pt/C catalyst. The design and synthesis of this 2D MOF-derived electrocatalyst offer promising prospects for developing high-density metal–air batteries.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.