Atomic Insights into pH-Dependent and Water Permeation of mRNA-Lipid Nanoparticles

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2025-01-21 DOI:10.1021/acs.molpharmaceut.4c0123910.1021/acs.molpharmaceut.4c01239
Shao-Jun Feng, Guang-Wen Chu, Hui Li* and Jian-Feng Chen*, 
{"title":"Atomic Insights into pH-Dependent and Water Permeation of mRNA-Lipid Nanoparticles","authors":"Shao-Jun Feng,&nbsp;Guang-Wen Chu,&nbsp;Hui Li* and Jian-Feng Chen*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0123910.1021/acs.molpharmaceut.4c01239","DOIUrl":null,"url":null,"abstract":"<p >The exposure of mRNA to water is likely to contribute to the instability of RNA vaccines upon storage under nonfrozen conditions. Using atomistic molecular dynamics (MD) simulations, we investigated the pH-dependent structural transition and water penetration behavior of mRNA-lipid nanoparticles (LNPs) with the compositions of Moderna and Pfizer vaccines against COVID-19 in an aqueous solution. It was revealed that the ionizable lipid (IL) membranes of LNPs were extremely sensitive to pH, and the increased acidity could cause a rapid membrane collapse and hydration swelling of LNP, confirming the high releasing efficiency of both LNP vaccines. The free energy profiles of water penetration showed that the conical structure of IL played a key role in obstructing water from entering the inner core of LNPs: the molecular geometry with more tail chains, lower linearity, and looser packing structure resulted in higher water permeability, leading to lower stability in nonfrozen liquid environment. On the other hand, the geometry of IL also dominated the fusion behavior of LNP with endosomal membrane during the endosomal escape. Thus, for LNP-based vaccines with both high release efficiency and high stability, a suitable molecular structure of ILs should be selected to seek a balance between the packing tightness and fusion rate of membranes.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 2","pages":"1020–1030 1020–1030"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.4c01239","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The exposure of mRNA to water is likely to contribute to the instability of RNA vaccines upon storage under nonfrozen conditions. Using atomistic molecular dynamics (MD) simulations, we investigated the pH-dependent structural transition and water penetration behavior of mRNA-lipid nanoparticles (LNPs) with the compositions of Moderna and Pfizer vaccines against COVID-19 in an aqueous solution. It was revealed that the ionizable lipid (IL) membranes of LNPs were extremely sensitive to pH, and the increased acidity could cause a rapid membrane collapse and hydration swelling of LNP, confirming the high releasing efficiency of both LNP vaccines. The free energy profiles of water penetration showed that the conical structure of IL played a key role in obstructing water from entering the inner core of LNPs: the molecular geometry with more tail chains, lower linearity, and looser packing structure resulted in higher water permeability, leading to lower stability in nonfrozen liquid environment. On the other hand, the geometry of IL also dominated the fusion behavior of LNP with endosomal membrane during the endosomal escape. Thus, for LNP-based vaccines with both high release efficiency and high stability, a suitable molecular structure of ILs should be selected to seek a balance between the packing tightness and fusion rate of membranes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Development and Evaluation of 68Ga-Labeled TMTP1-Based Cyclic Peptide Probes for Targeting Hepatocellular Carcinoma. Monitoring Sorafenib Resistance and Efficacy in Hepatocellular Carcinoma Using [18F]Alfatide II and [18F]Fluorodeoxyglucose Positron Emission Tomography. Chitosan-Coated Silver Nanourchins for Imatinib Mesylate Delivery: Biophysical Characterization, In-Silico Profiling, and Anti-Colon Cancer Efficacy. Meta-Analysis of Permeability Literature Data Shows Possibilities and Limitations of Popular Methods. Mucin Mimics and Impacts the Function of Polymeric Inhibitors in Stabilizing Drug Supersaturation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1