Lakshmi Suresh, Ralte Lalrempuia, Torstein Fjermestad, Karl. W. Törnroos, Jérôme Bour, Gilles Frache, Ainara Nova* and Erwan Le Roux*,
{"title":"Trapping of Key “Ate” Intermediates of NHC-Group IV Relevant to Catalyzing Copolymerization of Cyclohexene Oxide with CO2","authors":"Lakshmi Suresh, Ralte Lalrempuia, Torstein Fjermestad, Karl. W. Törnroos, Jérôme Bour, Gilles Frache, Ainara Nova* and Erwan Le Roux*, ","doi":"10.1021/acs.organomet.4c0037110.1021/acs.organomet.4c00371","DOIUrl":null,"url":null,"abstract":"<p >Together with bimetallic systems, metalates derived from anionic nucleophile-activated monometallic systems have shown very high catalytic performances for polycarbonates in epoxide–CO<sub>2</sub> copolymerization. However, examples of isolated metalates are rather scarce. Lately, a putative initiating hafnium “ate” species was isolated upon the addition of [PPN]Cl to the <i>N</i>-heterocyclic carbene (NHC) complex of hafnium [PPN][({κ<sup>3</sup>-<i>O,C,O</i>}-NHC)HfCl<sub>3</sub>] <b>3-Hf</b>. Inspired by this lead, Ti and Zr “ate” analogues of <b>3-Hf</b>, <b>3-Ti</b> and <b>3-Zr</b>, respectively, were synthesized. All the “ate” complexes exhibited high activity (TOF ≈ 363 h<sup>–1</sup>) and polycarbonate selectivity (≥99%) in the copolymerization of cyclohexene oxide (CHO) and CO<sub>2</sub> under mild conditions. Monitoring the ring-opening of CHO at room temperature with <b>3-Hf</b> revealed the rapid formation of a rare metalate intermediate, [PPN][({κ<sup>3</sup>-O,C,O}-NHC)HfCl<sub>2</sub>(OC<sub>6</sub>H<sub>10</sub>Cl)] <b>5-Hf</b>. Under similar conditions, excess addition of CHO to <b>3-Hf</b> formed a CHO adduct of <b>5-Hf</b> species (<b>6-Hf</b>) and at 80 °C led further toward another metalate intermediate, [PPN][({κ<sup>3</sup>-O,C,O}-NHC)HfCl(OC<sub>6</sub>H<sub>10</sub>Cl)<sub>2</sub>] <b>7-Hf</b>. Kinetic studies revealed the first-order dependence in both the catalyst and CHO concentrations and zero-order dependence in CO<sub>2</sub> with a Gibbs free energy of 24.4 kcal·mol<sup>–1</sup> at 80 °C. DFT calculations performed on the catalytic system suggest <b>7-Hf</b> to be one of the key active catalytic species favoring CO<sub>2</sub> insertion during copolymerization.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"44 1","pages":"68–81 68–81"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.organomet.4c00371","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organometallics","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.organomet.4c00371","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Together with bimetallic systems, metalates derived from anionic nucleophile-activated monometallic systems have shown very high catalytic performances for polycarbonates in epoxide–CO2 copolymerization. However, examples of isolated metalates are rather scarce. Lately, a putative initiating hafnium “ate” species was isolated upon the addition of [PPN]Cl to the N-heterocyclic carbene (NHC) complex of hafnium [PPN][({κ3-O,C,O}-NHC)HfCl3] 3-Hf. Inspired by this lead, Ti and Zr “ate” analogues of 3-Hf, 3-Ti and 3-Zr, respectively, were synthesized. All the “ate” complexes exhibited high activity (TOF ≈ 363 h–1) and polycarbonate selectivity (≥99%) in the copolymerization of cyclohexene oxide (CHO) and CO2 under mild conditions. Monitoring the ring-opening of CHO at room temperature with 3-Hf revealed the rapid formation of a rare metalate intermediate, [PPN][({κ3-O,C,O}-NHC)HfCl2(OC6H10Cl)] 5-Hf. Under similar conditions, excess addition of CHO to 3-Hf formed a CHO adduct of 5-Hf species (6-Hf) and at 80 °C led further toward another metalate intermediate, [PPN][({κ3-O,C,O}-NHC)HfCl(OC6H10Cl)2] 7-Hf. Kinetic studies revealed the first-order dependence in both the catalyst and CHO concentrations and zero-order dependence in CO2 with a Gibbs free energy of 24.4 kcal·mol–1 at 80 °C. DFT calculations performed on the catalytic system suggest 7-Hf to be one of the key active catalytic species favoring CO2 insertion during copolymerization.
期刊介绍:
Organometallics is the flagship journal of organometallic chemistry and records progress in one of the most active fields of science, bridging organic and inorganic chemistry. The journal publishes Articles, Communications, Reviews, and Tutorials (instructional overviews) that depict research on the synthesis, structure, bonding, chemical reactivity, and reaction mechanisms for a variety of applications, including catalyst design and catalytic processes; main-group, transition-metal, and lanthanide and actinide metal chemistry; synthetic aspects of polymer science and materials science; and bioorganometallic chemistry.