Wei-Chu Huang, Yi-Yin Lu, Shiao-Chen Huang, Tai-Chung Lo, Shun-Yuan Luo, Wei-Hong Huang, Chih-Wei Luo, Vincent K.-S. Hsiao and Chih-Chien Chu*,
{"title":"Redox-Gated Optical Modulation of Coumarin-Triphenyliminophosphorane Fluorophores","authors":"Wei-Chu Huang, Yi-Yin Lu, Shiao-Chen Huang, Tai-Chung Lo, Shun-Yuan Luo, Wei-Hong Huang, Chih-Wei Luo, Vincent K.-S. Hsiao and Chih-Chien Chu*, ","doi":"10.1021/acsphyschemau.4c0008210.1021/acsphyschemau.4c00082","DOIUrl":null,"url":null,"abstract":"<p >Novel coumarin-triphenyliminophosphorane (TPIPP) fluorophores, synthesized via a nonhydrolytic Staudinger reaction, exhibit remarkable redox-responsive optical properties. Upon chemical and electrochemical oxidation, these compounds display a hypsochromic shift in absorption from 430 to 350 nm, accompanied by up to 11-fold fluorescence enhancement under 405 nm excitation. The fluorescence switching occurs at an electrochemical oxidation potential of approximately +2.0 V. This enhanced one-photon excited fluorescence is attributed to an emissive radical effect, stemming from in situ generated radical cations at the polarizable iminophosphorane (P=N) bond. The radical formation was confirmed by trapping experiments using tetracyanoquinodimethane, which produced characteristic absorption of radical anions around 850 nm, and by electron spin resonance studies using 5,5-dimethyl-1-pyrroline <i>N</i>-oxide as a spin trap. Conversely, two-photon excited fluorescence under 800 nm pulsed laser excitation decreases upon oxidation, likely due to reduced two-photon absorption resulting from altered π-conjugation. This work demonstrates that external redox modulation can induce significant changes in absorption profiles and enable switching between enhanced one-photon and diminished two-photon excited fluorescence, highlighting the potential of leveraging the controllable radical character of the P=N bond in designing redox-responsive fluorophores.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 1","pages":"92–100 92–100"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00082","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Novel coumarin-triphenyliminophosphorane (TPIPP) fluorophores, synthesized via a nonhydrolytic Staudinger reaction, exhibit remarkable redox-responsive optical properties. Upon chemical and electrochemical oxidation, these compounds display a hypsochromic shift in absorption from 430 to 350 nm, accompanied by up to 11-fold fluorescence enhancement under 405 nm excitation. The fluorescence switching occurs at an electrochemical oxidation potential of approximately +2.0 V. This enhanced one-photon excited fluorescence is attributed to an emissive radical effect, stemming from in situ generated radical cations at the polarizable iminophosphorane (P=N) bond. The radical formation was confirmed by trapping experiments using tetracyanoquinodimethane, which produced characteristic absorption of radical anions around 850 nm, and by electron spin resonance studies using 5,5-dimethyl-1-pyrroline N-oxide as a spin trap. Conversely, two-photon excited fluorescence under 800 nm pulsed laser excitation decreases upon oxidation, likely due to reduced two-photon absorption resulting from altered π-conjugation. This work demonstrates that external redox modulation can induce significant changes in absorption profiles and enable switching between enhanced one-photon and diminished two-photon excited fluorescence, highlighting the potential of leveraging the controllable radical character of the P=N bond in designing redox-responsive fluorophores.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis