3D dynamic culture of muse cells on a porous gelatin microsphere after magnetic sorting: Achieving high purity proliferation

IF 3.4 3区 环境科学与生态学 Q3 CELL & TISSUE ENGINEERING Regenerative Therapy Pub Date : 2025-01-22 DOI:10.1016/j.reth.2025.01.003
Zhe Lu , Shifeng Ren , Bingjie Wang, Yajun Zhang, Xiaodong Mu, Zhihui Wang
{"title":"3D dynamic culture of muse cells on a porous gelatin microsphere after magnetic sorting: Achieving high purity proliferation","authors":"Zhe Lu ,&nbsp;Shifeng Ren ,&nbsp;Bingjie Wang,&nbsp;Yajun Zhang,&nbsp;Xiaodong Mu,&nbsp;Zhihui Wang","doi":"10.1016/j.reth.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>Muse cell has become a promising source of cells for disease treatment due to its remarkable characteristics, including stress tolerance, low tumorigenicity, effective homing ability, and differentiation into histocompatibility cells after transplantation. However, there are some obvious obstacles that need to be overcome in the efficient expansion of Muse cells. We extracted mesenchymal stem cells (MSCs) from human umbilical cord and their MSCs phenotypes were verified by flow cytometry. Then, immune magnetic sorting was performed to obtain Muse cells, and the expression of pluripotency related factors and the ability to differentiate into three germ layers were verified with sorted Muse cells. We then tested a new 3D culture method with dynamic microsphere carrier to possibly expand Muse cells more efficiently. Finally, in vivo experiments were conducted to check the homing ability of Muse cells to muscle injury. Our results showed that, the cultivation and expansion of Muse cells can be more effectively achieved through dynamic microsphere carrier; compared to non-Muse cells, Muse cells have stronger pluripotency and differentiation ability, and their homing ability in the muscle injury mice model is superior to that of non-Muse cells. Therefore, with the method of immune magnetic sorting and dynamic microsphere carrier, highly regenerative Muse cells can be more effectively sorted and expanded from MSCs.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"28 ","pages":"Pages 402-412"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320425000033","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Muse cell has become a promising source of cells for disease treatment due to its remarkable characteristics, including stress tolerance, low tumorigenicity, effective homing ability, and differentiation into histocompatibility cells after transplantation. However, there are some obvious obstacles that need to be overcome in the efficient expansion of Muse cells. We extracted mesenchymal stem cells (MSCs) from human umbilical cord and their MSCs phenotypes were verified by flow cytometry. Then, immune magnetic sorting was performed to obtain Muse cells, and the expression of pluripotency related factors and the ability to differentiate into three germ layers were verified with sorted Muse cells. We then tested a new 3D culture method with dynamic microsphere carrier to possibly expand Muse cells more efficiently. Finally, in vivo experiments were conducted to check the homing ability of Muse cells to muscle injury. Our results showed that, the cultivation and expansion of Muse cells can be more effectively achieved through dynamic microsphere carrier; compared to non-Muse cells, Muse cells have stronger pluripotency and differentiation ability, and their homing ability in the muscle injury mice model is superior to that of non-Muse cells. Therefore, with the method of immune magnetic sorting and dynamic microsphere carrier, highly regenerative Muse cells can be more effectively sorted and expanded from MSCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Regenerative Therapy
Regenerative Therapy Engineering-Biomedical Engineering
CiteScore
6.00
自引率
2.30%
发文量
106
审稿时长
49 days
期刊介绍: Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine. Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.
期刊最新文献
Grem1 inhibits osteogenic differentiation of MBMSCs in OVX rats through BMP/Smad1/5 signaling pathway Effect of platelet-rich plasma on angiogenic and regenerative properties in patients with critical limb ischemia Human placental extract improves liver cirrhosis in mice with regulation of macrophages and senescent cells Identification of mesenchymal stem cell populations with high osteogenic potential using difference in cell division rate Therapeutic potential of exosomes derived from human endometrial mesenchymal stem cells for heart tissue regeneration after myocardial infarction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1