Jiawei Wang , Chunzhong Qiao , Baoyang Luo , Lei Qin
{"title":"LncRNA THUMPD3-AS1/microRNA-4465/KPNA2 axis impacts human hepatocellular carcinoma cell phenotypes","authors":"Jiawei Wang , Chunzhong Qiao , Baoyang Luo , Lei Qin","doi":"10.1016/j.reth.2025.01.010","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Hepatocellular carcinoma (HCC) is a lethal malignancy in the world. LncRNA THUMPD3-AS1 is implicated in tumorigenesis and progression in various tumors. Therefore, this study was applied to investigate the action of THUMPD3-AS1 in HCC by regulating microRNA (miR)-4465 and KPNA2.</div></div><div><h3>Methods</h3><div>The clinical specimens of HCC were collected to determine THUMPD3-AS1, KPNA2, miR-4465, E-cadherin, Vimentin, N-cadherin, ZEB1 and SNAIL levels. HCC cells were screened and transfected with sh-THUMPD3-AS1 or miR-4465 mimic to explore their roles in HCC cell phenotype and epithelial-mesenchymal transition (EMT)-related factors. The involvement of miR-4465 in THUMPD3-AS1-mediated HCC was proved. The relationship of THUMPD3-AS1, KPNA2 and miR-4465 was verified.</div></div><div><h3>Results</h3><div>Overexpressed THUMPD3-AS1 and KPNA2 and reduced miR-4465 were present in HCC clinical tissues. THUMPD3-AS1 bound to miR-4465 to target KPNA2. Silencing of THUMPD3-AS1 or restoration of miR-4465 repressed HCC cell phenotypes and EMT <em>in vitro</em>. Inhibition of miR-4465 mitigated the role of silenced THUMPD3-AS1 in HCC.</div></div><div><h3>Conclusion</h3><div>This study stresses that THUMPD3-AS1 induces EMT in HCC cells and ultimately promotes HCC cell growth and migration by competitively inhibiting miR-4465 expression and thus upregulating KPNA2.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"28 ","pages":"Pages 413-420"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320425000100","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Hepatocellular carcinoma (HCC) is a lethal malignancy in the world. LncRNA THUMPD3-AS1 is implicated in tumorigenesis and progression in various tumors. Therefore, this study was applied to investigate the action of THUMPD3-AS1 in HCC by regulating microRNA (miR)-4465 and KPNA2.
Methods
The clinical specimens of HCC were collected to determine THUMPD3-AS1, KPNA2, miR-4465, E-cadherin, Vimentin, N-cadherin, ZEB1 and SNAIL levels. HCC cells were screened and transfected with sh-THUMPD3-AS1 or miR-4465 mimic to explore their roles in HCC cell phenotype and epithelial-mesenchymal transition (EMT)-related factors. The involvement of miR-4465 in THUMPD3-AS1-mediated HCC was proved. The relationship of THUMPD3-AS1, KPNA2 and miR-4465 was verified.
Results
Overexpressed THUMPD3-AS1 and KPNA2 and reduced miR-4465 were present in HCC clinical tissues. THUMPD3-AS1 bound to miR-4465 to target KPNA2. Silencing of THUMPD3-AS1 or restoration of miR-4465 repressed HCC cell phenotypes and EMT in vitro. Inhibition of miR-4465 mitigated the role of silenced THUMPD3-AS1 in HCC.
Conclusion
This study stresses that THUMPD3-AS1 induces EMT in HCC cells and ultimately promotes HCC cell growth and migration by competitively inhibiting miR-4465 expression and thus upregulating KPNA2.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.