Machine learning-supported visual analytics for high resolution X-ray inspection of metal matrix composites

Thomas Lang , Anja Heim , Christoph Heinzl
{"title":"Machine learning-supported visual analytics for high resolution X-ray inspection of metal matrix composites","authors":"Thomas Lang ,&nbsp;Anja Heim ,&nbsp;Christoph Heinzl","doi":"10.1016/j.tmater.2024.100047","DOIUrl":null,"url":null,"abstract":"<div><div>Metal matrix composites are utilized in a multitude of applications due to their mechanical and thermodynamical properties, which are highly dependent on the microstructure. A detailed characterization is thus vital for a sound understanding of the material’s properties. X-ray computed tomography, in particular high resolution synchrotron imaging, presents a promising inspection method for this purpose. However, a high-resolution inspection of medium-sized samples produces very large volumetric datasets, which prevents a proper data analysis with commonly available tools and software. We propose a workflow for analyzing large volumetric datasets of particle-reinforced metal matrix composites, from 3D renderings of the datasets to qualitative and quantitative characterizations of the material regarding shape and spatial distribution of the contained particles. Each step in this workflow is designed to be applicable to arbitrarily large volumetric datasets. Application-dependent visualizations facilitate derived secondary information to become accessible, generating in-depth insights despite the large number of particles. The workflow is demonstrated on a large high-resolution dataset in qualitative and quantitative evaluations, whose visual representations confirm that the distribution of particles within the sample is quite homogeneous albeit the presence of minor agglomerations.</div></div>","PeriodicalId":101254,"journal":{"name":"Tomography of Materials and Structures","volume":"7 ","pages":"Article 100047"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography of Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949673X2400024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metal matrix composites are utilized in a multitude of applications due to their mechanical and thermodynamical properties, which are highly dependent on the microstructure. A detailed characterization is thus vital for a sound understanding of the material’s properties. X-ray computed tomography, in particular high resolution synchrotron imaging, presents a promising inspection method for this purpose. However, a high-resolution inspection of medium-sized samples produces very large volumetric datasets, which prevents a proper data analysis with commonly available tools and software. We propose a workflow for analyzing large volumetric datasets of particle-reinforced metal matrix composites, from 3D renderings of the datasets to qualitative and quantitative characterizations of the material regarding shape and spatial distribution of the contained particles. Each step in this workflow is designed to be applicable to arbitrarily large volumetric datasets. Application-dependent visualizations facilitate derived secondary information to become accessible, generating in-depth insights despite the large number of particles. The workflow is demonstrated on a large high-resolution dataset in qualitative and quantitative evaluations, whose visual representations confirm that the distribution of particles within the sample is quite homogeneous albeit the presence of minor agglomerations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of AI crack segmentation models for additive manufacturing Contrast-enhancing staining agents for ex vivo contrast-enhanced computed tomography: A review Visualizing pulp fibers using X-ray tomography: Enhancing the contrast by labeling with iron oxide nanoparticles and the use of immersion oil 3D mineral quantification of particulate materials with rare earth mineral inclusions: Achieving sub-voxel resolution by considering the partial volume and blurring effect Geo-SegNet: A contrastive learning enhanced U-net for geomaterial segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1