Boron-containing MFI zeolite: Microstructure control and its performance of propane oxidative dehydrogenation

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2024-12-03 DOI:10.3866/PKU.WHXB202406012
Pei Li, Yuenan Zheng, Zhankai Liu, An-Hui Lu
{"title":"Boron-containing MFI zeolite: Microstructure control and its performance of propane oxidative dehydrogenation","authors":"Pei Li,&nbsp;Yuenan Zheng,&nbsp;Zhankai Liu,&nbsp;An-Hui Lu","doi":"10.3866/PKU.WHXB202406012","DOIUrl":null,"url":null,"abstract":"<div><div>Boron-containing zeolites can catalyze the oxidative dehydrogenation of propane (ODHP) to produce propylene. Enhancing the quantity of active boron-oxygen species and regulating the positioning of these species within the zeolite are the main challenges in developing efficient boron-based catalysts. In this study, a boron-containing zeolite catalyst with exposed (010) crystal facets, referred to as the MFI-type boron-containing zeolite (BMFI), was synthesized using a urea-assisted hydrothermal method. The research indicates that the addition of an appropriate amount of urea can regulate the morphology of the zeolite, with its short-axis flake-like structure enhancing the accessibility of active boron sites and anchoring a higher content of active boron-oxygen species through hydrogen bonding, which significantly improves the ODHP activity and olefin selectivity of the catalyst. The propane conversion rate reached 20 %, with a propylene selectivity of 62.3 % and a total olefin selectivity of 81.3 % at 520 °C. Compared to the ellipsoidal boron-containing catalyst formed without urea, the sheet-like BMFI catalyst exhibited nearly a 20-fold increase in the reaction rate of propane. The flake-like BMFI possesses a greater number of framework tetrahedrally coordinated boron (B[4]) and defective boron species (B[3]<sup>a</sup> and B[3]<sup>b</sup>), and active boron structural evolution occurred during the reaction process, with B[3]<sup>a</sup> and B[3]<sup>b</sup> being the active sites for the catalytic reaction. This study provides a reference for the structural design and regulation of boron-based catalysts for the oxidative dehydrogenation of light alkanes.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 4","pages":"Article 100034"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000341","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Boron-containing zeolites can catalyze the oxidative dehydrogenation of propane (ODHP) to produce propylene. Enhancing the quantity of active boron-oxygen species and regulating the positioning of these species within the zeolite are the main challenges in developing efficient boron-based catalysts. In this study, a boron-containing zeolite catalyst with exposed (010) crystal facets, referred to as the MFI-type boron-containing zeolite (BMFI), was synthesized using a urea-assisted hydrothermal method. The research indicates that the addition of an appropriate amount of urea can regulate the morphology of the zeolite, with its short-axis flake-like structure enhancing the accessibility of active boron sites and anchoring a higher content of active boron-oxygen species through hydrogen bonding, which significantly improves the ODHP activity and olefin selectivity of the catalyst. The propane conversion rate reached 20 %, with a propylene selectivity of 62.3 % and a total olefin selectivity of 81.3 % at 520 °C. Compared to the ellipsoidal boron-containing catalyst formed without urea, the sheet-like BMFI catalyst exhibited nearly a 20-fold increase in the reaction rate of propane. The flake-like BMFI possesses a greater number of framework tetrahedrally coordinated boron (B[4]) and defective boron species (B[3]a and B[3]b), and active boron structural evolution occurred during the reaction process, with B[3]a and B[3]b being the active sites for the catalytic reaction. This study provides a reference for the structural design and regulation of boron-based catalysts for the oxidative dehydrogenation of light alkanes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar–driven antibiotics photodegradation Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity Efficient capacitive desalination over NCQDs decorated FeOOH composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1